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Abstract Colorectal cancer (CRC) shows variable underlying
molecular changes with two major mechanisms of genetic in-
stability: chromosomal instability and microsatellite instability.
This review aims to delineate the different pathways of colo-
rectal carcinogenesis and provide an overview of the most re-
cent advances in molecular pathological classification systems
for colorectal cancer. Two molecular pathological classification
systems for CRC have recently been proposed. Integrated mo-
lecular analysis by The Cancer Genome Atlas project is based
on a wide-ranging genomic and transcriptomic characterisation
study of CRC using array-based and sequencing technologies.
This approach classified CRC into two major groups consistent
with previous classification systems: (1) ∼16 % hypermutated
cancers with either microsatellite instability (MSI) due to de-
fective mismatch repair (∼13 %) or ultramutated cancers with
DNA polymerase epsilon proofreading mutations (∼3 %); and
(2) ∼84 % non-hypermutated, microsatellite stable (MSS) can-
cers with a high frequency of DNA somatic copy number al-
terations, which showed common mutations in APC, TP53,
KRAS, SMAD4, and PIK3CA. The recent Consensus
Molecular Subtypes (CMS) Consortium analysing CRC ex-
pression profiling data from multiple studies described four
CMS groups: almost all hypermutated MSI cancers fell into

the first category CMS1 (MSI-immune, 14 %) with the remain-
ing MSS cancers subcategorised into three groups of CMS2
(canonical, 37 %), CMS3 (metabolic, 13 %) and CMS4 (mes-
enchymal, 23 %), with a residual unclassified group (mixed
features, 13 %). Although further research is required to vali-
date these two systems, they may be useful for clinical trial
designs and future post-surgical adjuvant treatment decisions,
particularly for tumours with aggressive features or predicted
responsiveness to immune checkpoint blockade.
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Mutation . Somatic copy number alterations . Consensus
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Introduction

Colorectal cancer (CRC) is the third most common cancer in
men and the second most common cancer in women, account-
ing for about 700,000 deaths per year [1]. The majority of 70–
80 % of CRC are sporadic, while around 20–30 % of CRC
have a hereditary component, due to either uncommon or rare,
high-risk, susceptibility syndromes, such as Lynch Syndrome
(LS) (3–4 %) and familial adenomatous polyposis (FAP)
(∼1 %) [2], or more common but low-risk alleles. Some of
the latter, such as Shroom2, have been identified by genome-
wide association studies (GWAS) [3]. A small subset of about
1–2 % of CRC cases arises as a consequence of inflammatory
bowel diseases [4].

CRC is not a homogenous disease, but can be classified
into different subtypes, which are characterised by specific
molecular and morphological alterations. A major feature of
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CRC is genetic instability that can arise by at least two differ-
ent mechanisms. The most common (around ∼84 % of spo-
radic CRC) is characterised by chromosomal instability
(CIN), with gross changes in chromosome number and struc-
ture including deletions, gains, translocations and other chro-
mosomal rearrangements. These are often detectable as a high
frequency of DNA somatic copy number alterations (SCNA),
which are a hallmark of most tumours that arise by the
adenoma-carcinoma sequence [5]. Previous molecular genetic
studies have associated CIN with inactivating mutations or
losses in the Adenomatous Polyposis Coli (APC) tumour sup-
pressor gene, which occur as an early event in the develop-
ment of neoplasia of the colorectum in this sequence. The

second group (around ∼13–16 % of sporadic CRC) are
hypermutated and show microsatellite instability (MSI) due
to defective DNA mismatch repair (MMR), often associated
with wild-type TP53 and a near-diploid pattern of chromo-
somal instability (Fig. 1) [6]. Furthermore, CpG island meth-
ylation phenotype (CIMP) is a feature that induces epigenetic
instability by promotor hypermethylation and silencing of a
range of tumour suppressor genes, including MLH1, one of
the MMR genes [7]. This review provides an overview of the
integrated molecular and transcriptomic patterns in CRC, in-
cluding new insights from The Cancer GenomeAtlas (TCGA)
project [8] and the Consensus Molecular Subtype (CMS)
Consortium [9].

Fig. 1 Molecular classification systems for colorectal cancers.On the left is
a representation of The Cancer Genome Atlas integrated molecular
classification of colorectal cancers into three groups: (1) ∼13 %
hypermutated tumours with microsatellite instability due to defective
mismatch repair, usually caused by MLH1 silencing via promoter
hypermethylation, with the dMMR pathway causing a hypermutated
phenotype resulting from failure to recognise and repair DNA mismatches
or insertions/deletions; 80–90 % of sporadic hypermutated cancers have
BRAF V600E (or similar) mutations; (2) ∼3 % ultramutated tumours with
DNA Polymerase Epsilon or Delta 1 (POLE or POLD1) exonuclease do-
main (proofreading) mutations (EDM), with the malfunctioning enzyme
introducing incorrect nucleotides during DNA replication, resulting in an
ultramutated phenotype; (3) ∼84 % CIN tumours with a high frequency of

DNA SCNAs, a low mutation rate (<8/Mb), microsatellite stability (MSS)
and deregulation of the WNT pathway most frequently by APC mutation.
On the right is a representation of the consensus molecular subtypes (CMS)
expression signature-based classification with four CMS groups—CMS1
(MSI-immune, 14 %), CMS2 (canonical, 37 %), CMS3 (metabolic, 13 %)
and CMS4 (mesenchymal, 23 %), with a residual unclassified group (mixed
features, 13 %). Molecular attributes and expression signatures for each
CMS group are indicated. (CIMP CpG Island methylator phenotype, CIN
chromosomal instability, C’ complement activation signature, CMS consen-
sus molecular subtypes, dMMR defective mismatch repair,MLH1-silMLH1
silencing by promoter hypermethylation,MSImicrosatellite instability,MSS
microsatellite stability, SCNA somatic copy number alteration, POLE DNA
polymerase epsilon (or D1, Delta 1)).
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Chromosomal instability is linked to abnormalities
of the WNT signalling pathway

CIN tumours usually arise as a consequence of a combination
of oncogene activation (e.g. KRAS, PIK3CA) and tumour sup-
pressor gene inactivation (e.g. APC, SMAD4 and TP53) by
allelic loss and mutation, which go along with changes in
tumour characteristics in the adenoma to carcinoma sequence,
as first described by Fearon and Vogelstein in 1990 [10]. A
key early event in this pathway is hyperactivation of the WNT
signalling pathway, usually arising frommutations of the APC
gene. Abnormalities of the WNT pathway characterise the
majority of sporadic colorectal cancers, as well as tumours
that arise in FAP patients [11]. Over 80 % of adenomas and
CRC exhibit APC mutations and a further 5–10 % are show-
ing mutations or epigenetic changes in other WNT signalling
components (e.g. β-catenin) that equally result in hyperacti-
vation of the WNT pathway [12–14]. APC is an important
negative regulator of the WNT pathway, being a component
of the Axin-APC degradosome complex that promotes the
proteasomal degradation of the WNT effector β-catenin. If
this complex is defective as a consequence of mutational in-
activation of APC, excess β-catenin accumulates within the
cytoplasm and translocates into the nucleus where it operates a
transcriptional switch leading to activation ofMYC and many
other genes [15]. Perturbation of the WNT pathway leads to a
dysregulation of proliferation and differentiation with the de-
velopment of dysplastic crypts, which progress to adenomas
with increasing grade of dysplasia owing to loss of other tu-
mour suppressor genes. The transition from adenoma to inva-
sive carcinoma is usually associated with mutation and/or loss
of the TP53 tumour suppressor gene.

Defective DNA mismatch repair leads
tomicrosatellite instability in sporadic hypermutated
cancers and Lynch syndrome cancers

Lynch syndrome (LS), also previously known as hereditary
non-polyposis colorectal cancer syndrome (HNPCC), is a syn-
drome of inherited susceptibility to cancers of several organs,
primarily the large bowel, with the next most frequently af-
fected being the endometrium. Moreover, there is also an in-
creased risk of adenocarcinomas of the ovary, stomach, small
intestine, transitional cell tumours of ureter and renal pelvis,
skin neoplasms (sebaceous tumours and keratoacanthomas),
and brain gliomas, amongst others. Development of a neo-
plasm involves inheriting and acquiring defects in the DNA
MMR system in the neoplastic cells. The syndrome is caused
by dominant inheritance of a mutant MMR gene (mostly ei-
ther MSH2 or MLH1), with all somatic cells containing one
mutated and one wild-type MMR allele. During tumour for-
mation, there is inactivation of the second MMR allele, by

mutation, deletion or promoter methylation (in the case of
the MLH1 gene), such that the neoplastic cell has inactivated
both MMR alleles. In contrast, in sporadic colorectal cancers
with defective mismatch repair, the mechanism is almost al-
ways (>95 %) promoter hypermethylation of both alleles of
the MLH1 gene, thus silencing MLH1 expression and crip-
pling the MMR pathway [16–20]. The selective pressure for
defective mismatch repair within a neoplasm appears to be
due to the reduced susceptibility to apoptosis induced by
mismatch-related DNA damage [21–23].

LS colorectal cancers are adenocarcinomas in type, often
poorly differentiated or sometimes undifferentiated, occasion-
ally with a dyscohesive appearance. They have prominent
tumour-infiltrating lymphocytes and peritumoural Crohns-
like lymphoid cell aggregates (Fig. 2) and arise more often
in the proximal than in the distal bowel. The major affected
genes in LS areMSH2 andMLH1, accounting for 40–45%LS
families each, with the others being mostly due to MSH6 and
PMS2 mutations (∼5–10 % LS families each), with rare LS
families having other affected genes [18]. The resulting failure
to repair DNA replication-associated mismatch errors in these
tumour cells produces a high frequency of mutations, either as
single base mismatches or in regions of short tandem DNA
repeats (the repeat units often being 1–4 bp in length), known
as microsatellites. Thus, DNA extracted from such LS tu-
mours shows variation in length (longer and shorter) of a
significant proportion of microsatellites, often more than
30 % of those microsatellite markers tested, a phenomenon
known as microsatellite instability at high frequency (MSI-H).

Following DNA damage or most commonly following
DNA replication-associated mismatch errors, MMR pro-
teins normally recognise both base mismatches and the
insertion/deletion loops (IDLs) that occur in repetitive
sequences. Recognition of mismatches and single base
IDLs involves the heterodimeric complexes of MutS-
related proteins MSH2 and MSH6 (known as hMutS-
Alpha), whereas IDLs of 2–8 nucleotides are recognised
by the complex of MSH2 and MSH3 (known as hMutS-
Beta). There is overlap in the specificities of these two
complexes and hence some redundancy in their activity.
A second type of heterodimeric complex, involving two
MutL-related proteins, such as either MLH1 and PMS2
(hMutL-Alpha), or MLH1 and PMS1 (hMutL-Beta),
binds to the hMutS complex along with other protein
components, so that excision of the recently synthesised
error-containing DNA strand occurs and resynthesis of
the correct sequence of nucleotides can take place, thus
repairing the error [20].

Loss or abnormal expression of the MMR proteins MLH1,
MSH2, MSH6 and PMS2, assessed by immunohistochemis-
try, is standard practice in many pathology laboratories and is
used to help identify LS cancers along with MSI typing of
tumour DNA [24–26] (Fig. 2). Distinguishing LS colorectal
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cancers that show loss of MLH1 expression from sporadic
MMR-deficient cancers is currently most appropriately per-
formed by detection of the specific mutation BRAF V600E,
which is found in around 80–90 % of sporadic MSI-H colo-
rectal cancers, but rarely—if ever—in colorectal cancers due
to Lynch syndrome [6, 27–31]. The presence of MLH1 pro-
moter hypermethylation may be used to distinguish sporadic
CRC from Lynch syndrome-associated CRC, but there are
interpretative problems as constitutiveMLH1 promoter meth-
ylation may occur, as well as technical challenges of
performing this test [19]. In addition to MLH1, there are a
number of other genes displaying DNA promoter hyperme-
thylation changes, sometimes referred to as CIMP-genes, but
there is some disagreement regarding which are the most re-
liable CIMP-genes and which tests to use for identification of
CIMP tumours [7, 14, 32].

Correlation of molecular pathways with serrated
morphology

In addition to CRC development via the well-described ade-
noma-carcinoma sequence, it is estimated that about 10–20 %
of carcinomas may develop via a different sequence of mor-
phological changes, known as the serrated pathway. While the
majority of serrated polyps (80–90 %) can be characterised as
hyperplastic polyps, which are considered benign bystander
lesions, a subset of serrated lesions can progress to colorectal
carcinoma. The two premalignant precursor lesions are tradi-
tional serrated adenomas (TSA) and sessile serrated
adenomas/polyps (SSA/P) (termed sessile serrated adenomas
or alternatively sessile serrated polyps, previous European
recommendations have also suggested the term sessile serrat-
ed lesions) [33, 34] (Fig. 2).

Cancers arising via the two serrated pathways are hetero-
geneous in terms of molecular patterns and cannot easily be
classified based on characteristic mutations, but rather by

specific morphologic changes. A common feature of the ser-
rated pathways is mutations in KRAS or BRAF, leading to
hyperactivation of the MAPKinase pathway. Furthermore
EphB2 can be downregulated by genomic loss or promoter
methylation, also resulting in MAPK hyperactivation [33, 35,
36]. The characteristic morphological features of the tradition-
al serrated pathway such as architectural dysplasia with ectop-
ic budding crypt formation and epithelial serrations are likely
to be linked with these molecular alterations that result in
hyperproliferation and inhibition of apoptosis [33, 37–39].

TSAs are more often diagnosed in the left colon. They
frequently (∼80 %) have KRAS mutations or less often (20–
30 %) BRAFmutations and are microsatellite stable (MSS) or
MSI-L. They are diagnosed based on characteristic cytology
(eosinophilic cytoplasm, central, elongated hyperchromatic
nuclei) and slit-like epithelial serrations with ectopic crypt
formation and may progress to adenocarcinoma (traditional
serrated pathway) [35, 40].

SSA/P frequently occur in the right colon, and they tend to
have BRAF mutations (∼80 %). CIMP is an early feature of
SSA/P and often leads to MSI, related to MLH1 promoter
hypermethylation. Also, MTMG can be silenced by promoter
methylation, which on its own results in anMSI-L phenotype.
SSA/P are characterised by abnormally shaped (boot,
inverted-anchor, J, L or inverted T) crypts or horizontal
growth along the muscularis mucosae, with crypt dilatation
and serration extending down to the crypt base [41]. These
architectural changes (without genuine dysplasia) are the hall-
mark of SSA/P and are believed to result from a displacement
of the maturation zone [33, 41, 42]. SSA/P may progress to
serrated or mucinous adenocarcinomas (sessile serrated
pathway).

Colorectal cancers arising via the serrated pathways have
been recognised as a distinct subtype overlapping with CIN
and MSI tumours by molecular profiling, and are strongly
associated with poor prognosis and therapy resistance. Since
EMTand matrix remodelling proteins are upregulated in these
lesions, it was hypothesised that this predisposes CRC devel-
oping via the serrated pathways to invasiveness andmetastasis
at an early stage [43]. Subsequent analysis revealed that MSI,
which often develops within SSA/P, resulted in a more
favourable prognosis, whereas MSS in carcinomas derived
from SSA/P, and more often from TSA, was linked to poor
prognosis [35, 36].

Integrated genomic characterisation of colorectal
cancers (TCGA classification)

The TCGA network project collected colorectal tumour sam-
ples and corresponding germline DNA samples from 276 pa-
tients for exome sequencing of 224 cancers with paired nor-
mal samples, along with DNA SCNA analysis, promoter

�Fig. 2 Integration of morphological and molecular features of colorectal
cancer, including the serrated precursors sessile serrated adenoma/polyp
and traditional serrated adenoma. a Poorly differentiated colorectal cancer
(on the left) of CMS1 (MSI-immune) with prominent tumour-infiltrating
lymphocytes (TILs) and underlying lymphocytes within the submucosa
with adjacent muscularis mucosae and crypt bases (on the right). b
Immunohistochemical stain for MLH1 showing loss of expression of
MLH1 protein in the adenocarcinoma (bottom left) with positive staining
for MLH1 in the overlying adenoma (top right) and adjacent lymphoid
and stromal cells. c Sessile serrated adenoma/polyp showing a high-
power view of the bases of dilated and serrated crypts with boot-shaped
architecture and horizontal growth along the top of the muscularis
mucosae, with mild nuclear enlargement but no dysplasia. d Traditional
serrated adenoma showing a high-power view of an elongated dysplastic
crypt with small lateral ectopic budding crypts, projecting at 90° to the
main axis of the long crypt. The nuclei are elongated, displaying a
pencillate pattern of low-grade dysplasia. (All photomicrographs taken
at ×100 magnification)
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methylation, messenger RNA (mRNA) and micro RNA
(miRNA) studies. Ninety-seven samples underwent whole ge-
nome sequencing. The clinical and pathological characteris-
tics reflected the typical cross-section of patients with CRC, so
this data provides a valuable source of information to gain
further insights into the molecular pathology of CRC [8].

The analysis revealed that the bowel cancers could be split
into two major groups by mutation rate—non-hypermutated
and hypermutated cancers—which by characteristics and fre-
quency match well with the previously discussed CIN andMSI
pathways (Fig. 1, Table 1). The hypermutated category was
further subdivided in two subgroups. While the majority of
tumours in this group (∼13 % of the analysed tumours) were
hypermutated cancers due to defective mismatch repair
(dMMR) with a high mutation rate of 12–40 mutations/Mb, a
small subgroup (∼3 % of the analysed tumours) had an ex-
tremely high mutation rate of >40 mutations/Mb and were thus
called ultramutated cancers. The dMMR of the hypermutated
cancers resulted from acquired hypermethylation of theMLH1
promoter in almost all cases, leading to the silencing of expres-
sion of MLH1 and non-functioning mismatch repair, which is
again in accordance with the previously discussed findings.
Almost all of these tumours showed CIMP characteristics, with
several other specifically tested genes also demonstrating pro-
moter methylation. A small number of cancers showed either
inherited (LS/HNPCC) or somatic MMR gene mutations. The
ultramutated colorectal carcinomas had an extremely high mu-
tation rate with a characteristic nucleotide base change spec-
trum with increased C-to-A transversions, resulting from the
presence of a mutation that inactivates the proofreading func-
tion within the exonuclease domain of the polymerase E
(POLE) DNA replicating enzyme, or rarely of POLD1. This
resulted in failure to correct the misincorporation of nucleotides
during DNA replication or repair by mutant POLE (or D1).

Other studies [44, 45] have shown that less than 0.1 % of
CRC have inherited mutations at characteristic sites within the
exonuclease domain of either POLE (p.Leu424Val) or POLD1
(p.Ser478Asn), which are the basis of the polymerase-
proofreading-associated polyposis (PPAP) syndrome that is
characterised by increased colorectal adenomas and adenocar-
cinomas as well as increased risk of endometrial cancer in the
case of inherited POLD1 mutations [44]. The group of non-
hypermutated cancers with a low mutation rate (<8 mutations/
Mb) mostly demonstrated a high SCNA frequency, making up
the majority (∼84 %) of colorectal adenocarcinomas that were
MSS due to an intact MMR pathway.

Ultramutated and hypermutated cancers were combined
into a single group and compared with the low mutation rate
MSS tumours. Overall, 32 genes were recurrently mutated and
after removal of non-expressed genes, there were 15 and 17
recurrently mutated genes in the hypermutated and non-
hypermutated bowel cancer groups, respectively. The signifi-
cantly mutated genes in the hypermutated cancers included
ACVR2A (63 %), APC (51 %), TGFBR2 (51 %), BRAF
(46 %), MSH3 (40 %), MSH6 (40 %), MYOB1 (31 %),
TCF7L2 (31 %), CASP8 (29 %), CDC27 (29 %), FZD3
(29 %), MIER3 (29 %), TCERG1 (29 %), MAP7 (26 %),
PTPN12 (26 %) and TP53 (20 %). The genes that were recur-
rently mutated in the non-hypermutated MSS colorectal can-
cers included mutations in APC (81 %), TP53 (60 %), KRAS
(43 %), TTN (31 %), PIK3CA (18 %), FBXW7 (11 %),
SMAD4 (10 %), NRAS (9 %), TCF7L2 (9 %), FAM123B, also
known as WTX, (7 %), SMAD2 (6 %), CTNNB1 (5 %),
KIAA1804 (4 %), SOX9 (4 %), ACVR1B (4 %), GPC6
(40 %) and EDNRB (3 %). The tumour suppressor genes
ATM and ARID1A showed a disproportionately high percent-
age of nonsense or frameshift mutations. TheKRAS andNRAS
mutations were activating oncogenic mutations at codons 12,

Table 1 Characteristics of colorectal cancers in TCGA integrated molecular classification

Group (1a) Ultramutated POLE
mutant

(1b) Hypermutated dMMR/MSI (2) CIN/SCNA-high, MSS

Mutation rate ++++ +++ +

Somatic copy number
alterations

+/− + +++

Key molecular/genetic
abnormality

POLE EDM
proofreading mutation

Defective MMR/MLH1 promoter
hypermethylation

Variety of mutated cancer genes; WNT pathway activation
(mostly by APC mutation/inactivation)

Predominant
histological type

Moderately
differentiated
adenocarcinoma

Mucinous, or signet ring, or poorly
differentiated adenocarcinoma

Moderately differentiated adenocarcinoma

Proportion of all
colorectal
carcinomas

∼3 % ∼13 % ∼84 %

Prognosis Good (more data
required)

Good/poor after relapse Good-poor (depending on other characteristics)

CIN chromosomal instability, POLE DNA polymerase epsilon, EDM exonuclease domain mutant, SCNA somatic copy number alteration, MMR
mismatch repair, MSI microsatellite instability
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13 and 61, and the BRAF mutation was the classical V600E
activating mutation, whereas the other genes almost entirely
had inactivating mutations.

Colonic and rectal cancers were combined for the analysis
of the non-hypermutated MSS group, as they showed no dis-
tinguishable molecular differences. SCNA patterns in non-
hypermutated MSS tumours confirmed the previously well-
documented [5] chromosomal arm-level changes of signifi-
cant gains of 1q, 7p, 7q, 8p, 8q, 12q, 13q, 19q and 20p, and
significant deletions of 1p, 4q, 5q, 8p, 14q, 15q, 17p (includes
TP53) and 17q, 18q (includes SMAD4), 20p and 22q.
Hypermutated MSI cancers had far fewer SCNAs, but a sim-
ilar pattern of chromosomal arm gains and losses. There were
28 recurrent deletion peaks that included the genes FHIT,
RBFOX1, WWOX, SMAD4, APC, PTEN, SMAD3 and
TCF7L2. Other studies have identified PARK2 as another re-
currently deleted gene on chromosome 6 in around a third of
CRCs [46]. A chromosomal translocation generating a gene
fusion of TCF7L2 and VT11A was seen in 3 % of CRC and
also NAV2-TCF7L1 fusion in three cancers. Focal amplifica-
tions were seen affecting MYC, ERBB2, IGF2, USP12,
CDK8, KLF5, HNF4A, WHSC1L1/FGFR1 and gains of
IRS2 [47].

The most frequently altered pathways by gene mutations,
deletions, amplifications and translocations were activation of
the WNT, MAPK and PI3K signalling pathways, and deacti-
vation of the TGF-β and P53 inhibitory pathways, which may
be relevant for targeted therapies. TheWNTsignalling pathway
was activated in 93 % of non-hypermutated and 97 % of
hypermutated cancers, involving biallelic inactivation of APC
or activation of CTNNB1 in over 80 % of tumours, together
with changes to many other genes involved in regulation of the
WNT pathway (TCF7L2, DKK, AXIN2, FBXW7, ARID1A,
FAM123B, FZD10 and SOX9). Alterations affecting either the
MAPK (ERBB2, RAS genes, BRAF) or PI3K (PIK3CA,
PIK3R1, PTEN, IGF2, IRS2) signalling pathways were rela-
tively common, often showing patterns of mutual exclusivity of
gene mutations (for RAS and BRAF or for PIK3CA, PIK3R1
and PTEN). The TGF-β pathway was deregulated by alter-
ations to TGFBR1, TGFBR2, ACVR2A, ACVR1B, SMAD2,
SMAD3 and SMAD4 in 27 % of non-hypermutated MSS tu-
mours and 87 % of hypermutated cancers. The P53 pathway
was affected by mutations to TP53 (60 %) and ATM (7 %) in a
near mutually exclusive pattern in non-hypermutated MSS
bowel cancers. An integrated data analysis showed that nearly
all tumours displayed dysregulation ofMYC transcriptional tar-
gets as a result ofMYC activation by activated WNTsignalling
and/or dysregulation of TGF-β signalling, indicating an impor-
tant role for MYC in colorectal cancer. Using CRC resection
data on stage, nodal status, distant metastasis and vascular in-
vasion, some molecular changes were associated with aggres-
sive features including those affecting SCN5A, APC, TP53,
PIK3CA, BRAF and FBXW7 as well as altered expression of

some miRNAs. Potential therapeutic approaches suggested by
the TCGA classification are targeting of IGF2, IGFR, ERBB2,
ERBB3, MEK, AKT and mTOR proteins as well as possible
WNT pathway inhibitors.

Colorectal cancer gene expression profiling (CMS
Classification)

Early attempts at gene expression profiling in order to
stratify CRC were made by several groups, but showed
little agreement with each other, suggesting different cat-
egories, and did not lead to a useful single consistent
classification system [43, 48–53]. Subsequently, an inter-
national expert consortium [9] recently reached an agree-
ment that describes four consensus molecular subtypes
(CMS) after analysis of 18 different CRC gene expression
datasets, including data from TCGA in conjunction with
molecular data on mutations and SCNAs for a subset of
the samples (Fig. 1).

CMS1 (MSI-immune, 14 %) CRC were hypermutated due
to defective DNA mismatch repair with MSI and MLH1 si-
lencing and accordingly CIMP-high with frequent BRAF mu-
tations, while having a low number of SCNAs. This equates
with the previously well-characterised sporadic MSI CRC
subgroup. Gene expression profiling furthermore revealed ev-
idence of strong immune activation (immune response, PD1
activation, NK cell, Th1 cell and cytotoxic T cell infiltration
signatures) in CMS1, consistent with pathological descrip-
tions of prominent tumour-infiltrating CD8+ cytotoxic T lym-
phocytes. Patients with the CMS1 subtype had a very poor
survival rate after relapse.

The majority of CRC previously described as CIN was
split into three subcategories based on transcriptomic
profiling, which consequently were all characterised by
high levels of SCNAs. CMS2 (canonical, 37 %) CRC
predominantly displayed epithelial signatures with prom-
inent WNT and MYC signalling activation, and more
often displayed loss of tumour suppressor genes and copy
number gains of oncogenes than the other subtypes.
CMS2 patients had a better survival rate after relapse
compared with the other subtypes. The CMS3 (metabolic,
13 %) subtype had fewer SCNAs and contained more
hypermutated/MSI samples than CMS2 and CMS4, along
with frequent KRAS mutations and a slightly higher prev-
alence of CIMP-low. Gene expression analysis of CMS3
found predominantly epithelial signatures and evidence
of metabolic dysregulation in a variety of pathways.
The CMS4 subtype (mesenchymal, 23 %) CRC showed
increased expression of EMT genes and evidence of
prominent transforming growth factor-β activation, with
expression of genes implicated in complement-associated
inflammation, matrix remodelling, stromal invasion and
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angiogenesis. Patients with the CMS4 subtype had a
worse overall survival and worse relapse-free survival
than patients of the other groups. Finally, there were
some samples with mixed features (13 %) that possibly
represent either a transition phenotype or intratumoural
heterogeneity.

This CMS classification system has been suggested by the
authors to be the most robust classification system currently
available for CRC based on biological processes related to
gene expression patterns and is suggested as a basis for future
clinical stratification in trials and other studies with potential
for subtype-based targeted interventions, although further
studies are required to validate this assertion.

Conclusion

In conclusion, integration of wide-ranging molecular data has
generated two systems of classification of colorectal cancers
(Fig. 1, Table 1). (A) TCGA classification—tumours with a
very high mutation rate which can be further subdivided into
either (1a) ultramutated colorectal cancers (∼3 %) with DNA
polymerase epsilon (POLE) proofreading domain mutations,
or (1b) hypermutated colorectal cancers (∼13 %) with micro-
satellite instability due to defective mismatch repair; and (2)
colorectal cancers (∼84%) with a low mutation rate but a high
frequency of DNA SCNAs. (B) The CMS classification de-
scribes four CMS groups—CMS1 (MSI-immune activation,
14 %), CMS2 (canonical, 37 %), CMS3 (metabolic, 13 %)
and CMS4 (mesenchymal, 23 %), with a residual unclassified
group (mixed features, 13 %). Further research is required to
develop more easily applicable molecular tests, such as low-
coverage high-throughput sequencing for DNA SCNA anal-
ysis and/or cancer gene panel mutation detection, and prefer-
ably easily applicable and useful immunohistochemical
markers for these CMS subdivisions. Analysis of expression
of the MMR proteins and/or MSI testing is currently efficient
at identifying the group of defective mismatch repair MSI
tumours (CMS1). Both classification systems agree on iden-
tification of this dMMR/MSI group, which has recently been
shown to respond well to immune checkpoint blockade
(antibodies to PD-1) that activates cytotoxic T cell attacks on
tumour cells, which is suggested to be related to the large
numbers of neo-antigens generated by dMMR [54, 55]. A
straightforward and routinely applicable molecular test using
PCR and sequencing for identification of POLE (and POLD1)
proofreading mutations associated with ultramutated cancer
may be performed in molecular pathology laboratories, al-
though in the future a mutation-specific POLE antibody for
immunohistochemistry may be developed to aid routine sub-
classification. Ultramutated cancers are likely to generate
higher levels of neo-antigens and may also respond well to
immune checkpoint blockade therapy. Selected transcript

expression profiling kits for CMS classification may be re-
quired for application of this system. Both classification sys-
tems have been proposed to allow better prognostication and
are potentially important for future use in clinical trials and for
multidisciplinary team discussions about post-surgical adju-
vant treatment, including immune checkpoint blockade.
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