21 research outputs found

    An exact solution of the moving boundary problem for the relativistic plasma expansion in a dipole magnetic field

    Full text link
    An exact analytic solution is obtained for a uniformly expanding, neutral, highly conducting plasma sphere in an ambient dipole magnetic field with an arbitrary orientation of the dipole moment in the space. Based on this solution the electrodynamical aspects related to the emission and transformation of energy have been considered. In order to highlight the effect of the orientation of the dipole moment in the space we compare our results obtained for parallel orientation with those for transversal orientation. The results obtained can be used to treat qualitatively experimental and simulation data, and several phenomena of astrophysical and laboratory significance.Comment: 7 pages, 2 figures. arXiv admin note: substantial text overlap with arXiv:physics/060323

    Modeling ϵ\epsilon Eridani and asteroseismic tests of element diffusion

    Full text link
    Taking into account the helium and metal diffusion, we explore the possible evolutionary status and perform seismic analysis of MOST target: the star ϵ\epsilon Eridani. We adopt the different input parameters to construct the models by fitting the available observational constraints: e.g., TeffT_{eff}, LL, RR, [Fe/H][Fe/H]. From computation, we obtain the average large spacings of ϵ\epsilon Eridani about 194±1μ194\pm 1 \muHz. The age of the diffused models has been found to be about 1 Gyr, which is younger than one determined previously by models without diffusion. We found that the effect of pure helium diffusion on the internal structure of the young low-mass star is slight, but the metal diffusion influence is obvious. The metal diffusion leads the models to have much higher temperature in the radiation interior, correspondingly the higher sound speed in the interior of the model, thereby the larger frequency and spacings.Comment: 16 pages, 4 figures, accepted for publication in ChjA

    Effect of inhomogeneity of the Universe on a gravitationally bound local system: A no-go result for explaining the secular increase in the astronomical unit

    Get PDF
    We will investigate the influence of the inhomogeneity of the universe, especially that of the Lema{\^i}tre-Tolman-Bondi (LTB) model, on a gravitationally bound local system such as the solar system. We concentrate on the dynamical perturbation to the planetary motion and derive the leading order effect generated from the LTB model. It will be shown that there appear not only a well-known cosmological effect arisen from the homogeneous and isotropic model, such as the Robertson-Walker (RW) model, but also the additional terms due to the radial inhomogeneity of the LTB model. We will also apply the obtained results to the problem of secular increase in the astronomical unit, reported by Krasinsky and Brumberg (2004), and imply that the inhomogeneity of the universe cannot have a significant effect for explaining the observed dAU/dt=15±4 [m/century]d{\rm AU}/dt = 15 \pm 4 ~{\rm [m/century]}.Comment: 12 pages, no figure, accepted for publication in Journal of Astrophysics and Astronom

    Dynamical stability of infinite homogeneous self-gravitating systems: application of the Nyquist method

    Full text link
    We complete classical investigations concerning the dynamical stability of an infinite homogeneous gaseous medium described by the Euler-Poisson system or an infinite homogeneous stellar system described by the Vlasov-Poisson system (Jeans problem). To determine the stability of an infinite homogeneous stellar system with respect to a perturbation of wavenumber k, we apply the Nyquist method. We first consider the case of single-humped distributions and show that, for infinite homogeneous systems, the onset of instability is the same in a stellar system and in the corresponding barotropic gas, contrary to the case of inhomogeneous systems. We show that this result is true for any symmetric single-humped velocity distribution, not only for the Maxwellian. If we specialize on isothermal and polytropic distributions, analytical expressions for the growth rate, damping rate and pulsation period of the perturbation can be given. Then, we consider the Vlasov stability of symmetric and asymmetric double-humped distributions (two-stream stellar systems) and determine the stability diagrams depending on the degree of asymmetry. We compare these results with the Euler stability of two self-gravitating gaseous streams. Finally, we determine the corresponding stability diagrams in the case of plasmas and compare the results with self-gravitating systems

    Dimensionless cosmology

    Full text link
    Although it is well known that any consideration of the variations of fundamental constants should be restricted to their dimensionless combinations, the literature on variations of the gravitational constant GG is entirely dimensionful. To illustrate applications of this to cosmology, we explicitly give a dimensionless version of the parameters of the standard cosmological model, and describe the physics of Big Bang Neucleosynthesis and recombination in a dimensionless manner. The issue that appears to have been missed in many studies is that in cosmology the strength of gravity is bound up in the cosmological equations, and the epoch at which we live is a crucial part of the model. We argue that it is useful to consider the hypothetical situation of communicating with another civilization (with entirely different units), comparing only dimensionless constants, in order to decide if we live in a Universe governed by precisely the same physical laws. In this thought experiment, we would also have to compare epochs, which can be defined by giving the value of any {\it one} of the evolving cosmological parameters. By setting things up carefully in this way one can avoid inconsistent results when considering variable constants, caused by effectively fixing more than one parameter today. We show examples of this effect by considering microwave background anisotropies, being careful to maintain dimensionlessness throughout. We present Fisher matrix calculations to estimate how well the fine structure constants for electromagnetism and gravity can be determined with future microwave background experiments. We highlight how one can be misled by simply adding GG to the usual cosmological parameter set

    The intrinsic shape of galaxy bulges

    Full text link
    The knowledge of the intrinsic three-dimensional (3D) structure of galaxy components provides crucial information about the physical processes driving their formation and evolution. In this paper I discuss the main developments and results in the quest to better understand the 3D shape of galaxy bulges. I start by establishing the basic geometrical description of the problem. Our understanding of the intrinsic shape of elliptical galaxies and galaxy discs is then presented in a historical context, in order to place the role that the 3D structure of bulges play in the broader picture of galaxy evolution. Our current view on the 3D shape of the Milky Way bulge and future prospects in the field are also depicted.Comment: Invited Review to appear in "Galactic Bulges" Editors: Laurikainen E., Peletier R., Gadotti D. Springer Publishing. 24 pages, 7 figure

    The fundamental constants and their variation: observational status and theoretical motivations

    Full text link
    This article describes the various experimental bounds on the variation of the fundamental constants of nature. After a discussion on the role of fundamental constants, of their definition and link with metrology, the various constraints on the variation of the fine structure constant, the gravitational, weak and strong interactions couplings and the electron to proton mass ratio are reviewed. This review aims (1) to provide the basics of each measurement, (2) to show as clearly as possible why it constrains a given constant and (3) to point out the underlying hypotheses. Such an investigation is of importance to compare the different results, particularly in view of understanding the recent claims of the detections of a variation of the fine structure constant and of the electron to proton mass ratio in quasar absorption spectra. The theoretical models leading to the prediction of such variation are also reviewed, including Kaluza-Klein theories, string theories and other alternative theories and cosmological implications of these results are discussed. The links with the tests of general relativity are emphasized.Comment: 56 pages, l7 figures, submitted to Rev. Mod. Phy

    Intrinsic Shapes of Elliptical Galaxies

    Full text link
    Tests for the intrinsic shape of the luminosity distribution in elliptical galaxies are discussed, with an emphasis on the uncertainties. Recent determinations of the ellipticity frequency function imply a paucity of nearly spherical galaxies, and may be inconsistent with the oblate hypothesis. Statistical tests based on the correlation of surface brightness, isophotal twisting, and minor axis rotation with ellipticity have so far not provided strong evidence in favor of the nearly oblate or nearly prolate hypothesis, but are at least qualitatively consistent with triaxiality. The possibility that the observed deviations of elliptical galaxy isophotes form ellipses are due to projection effects is evaluated. Dynamical instabilities may explain the absence of elliptical galaxies flatter than about E6, and my also play a role in the lack of nearly-spherical galaxies
    corecore