400 research outputs found

    Ethical Implications of Covid-19 Vaccine Mandates

    Get PDF
    This project will be looking at the ethical implications of the Covid-19 Vaccine Mandates. The paper will look at various ethical theories as well as different ethicists and apply it to the Covid-19 Vaccine Mandates. The project will come to the conclusion of whether the Vaccine Mandates were ethical or not given certain ethical ideas and views from the various ethicists

    Low cycle fatigue behavior of polycrystalline NiAl at 300 and 1000 K

    Get PDF
    The low cycle fatigue behavior of polycrystalline NiAl was determined at 300 and 1000 K - temperatures below and above the brittle- to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on two differently fabricated alloy samples: hot isostatically pressed (HIP'ed) prealloyed powder and hot extruded castings. HIP'ed powder (HP) samples were tested only at 1000 K, whereas the more ductile cast-and-extruded (C+E) NiAl samples were tested at both 1000 and 300 K. Plastic strain ranges of 0.06 to 0.2 percent were used. The C+E NiAl cyclically hardened until fracture, reaching stress levels approximately 60 percent greater than the ultimate tensile strength of the alloy. Compared on a strain basis, NiAl had a much longer fatigue life than other B2 ordered compounds in which fracture initiated at processing-related defects. These defects controlled fatigue life at 300 K, with fracture occurring rapidly once a critical stress level was reached. At 1000 K, above the BDTT, both the C+E and HP samples cyclically softened during most of the fatigue tests in air and were insensitive to processing defects. The processing method did not have a major effect on fatigue life; the lives of the HP samples were about a factor of three shorter than the C+E NiAl, but this was attributed to the lower stress response of the C+E material. The C+E NiAl underwent dynamic grain growth, whereas the HP material maintained a constant grain size during testing. In both materials, fatigue life was controlled by intergranular cavitation and creep processes, which led to fatigue crack growth that was primarily intergranular in nature. Final fracture by overload was transgranular in nature. Also, HP samples tested in vacuum had a life three times longer than their counterparts tested in air and, in contrast to those tested in air, hardened continuously over half of the sample life, thereby indicating an environmentally assisted fatigue damage mechanism. The C+E samples were tested only in air. At 1000 K, NiAl exhibited a superior fatigue life when compared to most superalloys on a plastic strain basis, but was inferior to most superalloys on a stress basis

    The role of rapid solidification processing in the fabrication of fiber reinforced metal matrix composites

    Get PDF
    Advanced composite processing techniques for fiber reinforced metal matrix composites require the flexibility to meet several widespread objectives. The development of uniquely desired matrix microstructures and uniformly arrayed fiber spacing with sufficient bonding between fiber and matrix to transmit load between them without degradation to the fiber or matrix are the minimum requirements necessary of any fabrication process. For most applications these criteria can be met by fabricating composite monotapes which are then consolidated into composite panels or more complicated components such as fiber reinforced turbine blades. Regardless of the end component, composite monotapes are the building blocks from which near net shape composite structures can be formed. The most common methods for forming composite monotapes are the powder cloth, foil/fiber, plasma spray, and arc spray processes. These practices, however, employ rapid solidification techniques in processing of the composite matrix phase. Consequently, rapid solidification processes play a vital and yet generally overlooked role in composite fabrication. The future potential of rapid solidification processing is discussed

    Direct observations of nucleation in a nondilute multicomponent alloy

    Full text link
    The chemical pathways leading to gamma-prime(L1_2)-nucleation from nondilute Ni-5.2 Al-14.2 Cr at.%, gamma(f.c.c.), at 873 K are followed with radial distribution functions and isoconcentration surface analyses of direct-space atom-probe tomographic images. Although Cr atoms initially are randomly distributed, a distribution of congruent Ni3Al short-range order domains (SRO), =0.6 nm, results from Al diffusion during quenching. Domain site occupancy develops as their number density increases leading to Al-rich phase separation by gamma-prime-nucleation, =0.75 nm, after SRO occurs.Comment: 5 pages, 4 figure

    Review of the physical and mechanical properties and potential applications of the B2 compound NiAl: Unabridged version of a paper published in International materials review

    Get PDF
    Considerable work has been performed on NiAl over the last three decades, with an extremely rapid growth in research on this intermetallic occurring in the last few years due to recent interest in this material for electronic and high temperature structural applications. However, many physical properties and the controlling fracture and deformation mechanisms over certain temperature regimes are still in question. Part of this problem lies in the incomplete characterization of many of the alloys previously investigated. Fragmentary data on processing conditions, chemistry, microstructure and the apparent difficulty in accurately measuring composition has made direct comparison between individual studies sometimes tenuous. Therefore, the purpose of this review is to summarize all available mechanical and pertinent physical properties on NiAl, stressing the most recent investigations, in an attempt to understand the behavior of NiAl and its alloys over a broad temperature range

    Prospects for Ductility and Toughness Enhancement of Nial by Ductile Phase Reinforcement

    Get PDF
    The use of NiAl as a structural material has been hindered by the fact that this ordered intermetallic does not exhibit significant tensile ductility or toughness at room temperature. A critical review of the operative flow and fracture mechanisms in monolithic NiAl has thus established the need for ductile phase toughening in this order system. Progress in ductile phase reinforced intermetallic systems in general and specifically NiAl-based materials has been reviewed. In addition, further clarification of the primary mechanisms involved in the flow and fracture of ductile phase reinforced alloys has evolved from ongoing investigations of several model NiAl-based materials. The mechanical behavior of these model directionally-solidified alloys (Ni-30Al and Ni-30Fe-20Al) are discussed. Finally, the prospects for developing a ductile phase toughened NiAl-based alloy and the shortcomings presently inherent in these systems are analyzed

    Structure-Property Relationships of Bismaleimides

    Get PDF
    The purpose of this research was to control and systematically vary the network topology of bismaleimides through cure temperature and chemistry (addition of various coreactants) and subsequently attempt to determine structure-mechanical property relationships. Characterization of the bismaleimide structures by dielectric, rheological, and thermal analyses, and density measurements was subsequently correlated with mechanical properties such as modulus, yield strength, fracture energy, and stress relaxation. The model material used in this investigation was 4,4'-BismaleiMidodIphenyl methane (BMI). BMI was coreacted with either 4,4'-Methylene Dianiline (MDA), o,o'-diallyl bisphenol A (DABA) from Ciba Geigy, or Diamino Diphenyl Sulfone (DDS). Three cure paths were employed: a low- temperature cure of 140 C where chain extension should predominate, a high-temperature cure of 220 C where both chain extension and crosslinking should occur simultaneously, and a low-temperature (140 C) cure followed immediately by a high-temperature (220 C) cure where the chain extension reaction or amine addition precedes BMI homopolymerization or crosslinking. Samples of cured and postcured PMR-15 were also tested to determine the effects of postcuring on the mechanical properties. The low-temperature cure condition of BMI/MDA exhibited the highest modulus values for a given mole fraction of BMI with the modulus decreasing with decreasing concentration of BMI. The higher elastic modulus is the result of steric hindrance by unreacted BMI molecules in the glassy state. The moduli values for the high- and low/high-temperature cure conditions of BMI/MDA decreased as the amount of diamine increased. All the moduli values mimic the yield strength and density trends. For the high-temperature cure condition, the room- temperature modulus remained constant with decreasing mole fraction of BMT for the BMI/DABA and BMI/DDS systems. Postcuring PMR-15 increases the modulus over that of the cured material even though density values of cured and postcured PMR were essentially the same. Preliminary results of a continuous and intermittent stress relaxation experiment for BMI:MDA in a 2:1 molar ratio indicate that crosslinking is occurring when the sample is in the undeformed state. Computer simulation of properties such as density, glass transition temperature, and modulus for the low- temperature cure conditions of BMI/MDA and BMI/DABA were completed. The computer modeling was used to help further understand and confirm the structure characterization results. The simulations correctly predicted the trends of these properties versus mole fraction BMI and were extended to other BMI/diamine systems

    NiAl-based approach for rocket combustion chambers

    Get PDF
    A multi-layered component, such as a rocket engine combustion chamber, includes NiAl or NiAl-based alloy as a structural layer on the hot side of the component. A second structural layer is formed of material selected from Ni-based superalloys, Co-based alloys, Fe-based alloys, Cu, and Cu-based alloys. The second material is more ductile than the NiAl and imparts increased toughness to the component. The second material is selected to enhance one or more predetermined physical properties of the component. Additional structural layers may be included with the additional material(s) being selected for their impact on physical properties of the component
    corecore