124 research outputs found

    Effects of cellooligosaccharide or a combination of cellooligosaccharide and live Clostridium butyricum culture on performance and intestinal ecology in Holstein calves fed milk or milk replacer

    Get PDF
    The effects of oral administration of a prebiotic (cellooligosaccharide [CE]) and a combination of a probiotic (a commercial Clostridium butyricum strain) and prebiotics (referred to as symbiotics [SB]) on performance and intestinal ecology in Holstein calves fed milk replacer (MR) or whole milk were evaluated. Forty female calves (experiment 1) and 14 male and female calves (experiment 2) were used in this study. Calves were fed MR (experiment 1) or whole milk (experiment 2) necessary for daily weight gain of 0.3 kg based on birth weight in two daily feedings and weaned at 46 days. Calves were divided into a CE feeding group, SB feeding group (only in experiment 1), and control group. The CE and SB groups were fed CE at 5 g/day before weaning and 10 g/day postweaning. Only the SB group received 108 colony-forming units (CFU) of C butyricum culture per day. Commercial calf starter was offered for ad libitum intake. Health and feed intake of the animals were monitored daily, and body weight was measured weekly. Fecal samples were analyzed for determination of bacterial community composition by an RNA-based method (sequence-specific SSU rRNA cleavage method) and for organic acid profiling. In 49-day experiments, feed intake, daily gain, and occurrence of diarrhea of the calves were unaffected by either CE supplementation or SB supplementation, and all calves were healthy during each experiment. The fecal bacterial community compositions and the organic acid profiles were not different among groups in experiment 1. In experiment 2, the level of the Clostridium coccoides-Eubacterium rectale group was higher in the feces of CE group than controls at 4 weeks of age and fecal butyric acid concentration was higher (8.0 vs. 12.2 [mmol/kg feces], P <0.05) at that time. There were no differences in prebiotic bacteria (the genera Lactobacillus and Bifidobacterium) between groups at this time point. These results suggested that CE and C. butyricum supplementation have less effect on the performance of healthy calves fed MR. However, prebiotic supplementation seems effective for modulation of the intestinal bacterial community of calves when administered with whole milk.ArticleLIVESTOCK SCIENCE. 153(1-3):88-93 (2013)journal articl

    Identification of Retinal Ganglion Cells and Their Projections Involved in Central Transmission of Information about Upward and Downward Image Motion

    Get PDF
    The direction of image motion is coded by direction-selective (DS) ganglion cells in the retina. Particularly, the ON DS ganglion cells project their axons specifically to terminal nuclei of the accessory optic system (AOS) responsible for optokinetic reflex (OKR). We recently generated a knock-in mouse in which SPIG1 (SPARC-related protein containing immunoglobulin domains 1)-expressing cells are visualized with GFP, and found that retinal ganglion cells projecting to the medial terminal nucleus (MTN), the principal nucleus of the AOS, are comprised of SPIG1+ and SPIG1− ganglion cells distributed in distinct mosaic patterns in the retina. Here we examined light responses of these two subtypes of MTN-projecting cells by targeted electrophysiological recordings. SPIG1+ and SPIG1− ganglion cells respond preferentially to upward motion and downward motion, respectively, in the visual field. The direction selectivity of SPIG1+ ganglion cells develops normally in dark-reared mice. The MTN neurons are activated by optokinetic stimuli only of the vertical motion as shown by Fos expression analysis. Combination of genetic labeling and conventional retrograde labeling revealed that axons of SPIG1+ and SPIG1− ganglion cells project to the MTN via different pathways. The axon terminals of the two subtypes are organized into discrete clusters in the MTN. These results suggest that information about upward and downward image motion transmitted by distinct ON DS cells is separately processed in the MTN, if not independently. Our findings provide insights into the neural mechanisms of OKR, how information about the direction of image motion is deciphered by the AOS

    フォン・ヴィレブランド因子の機能を調節することで、マウスの急性腎虚血再灌流障害を緩和できる

    Get PDF
    Acute kidney injury (AKI), an abrupt loss of renal function, is often seen in clinical settings and may become fatal. In addition to its hemostatic functions, von Willebrand factor (VWF) is known to play a role in cross-talk between inflammation and thrombosis. We hypothesized that VWF may be involved in the pathophysiology of AKI, major causes of which include insufficient renal circulation or inflammatory cell infiltration in the kidney. To test this hypothesis, we studied the role of VWF in AKI using a mouse model of acute ischemia-reperfusion (I/R) kidney injury. We analyzed renal function and blood flow in VWF-gene deleted (knock-out; KO) mice. The functional regulation of VWF by ADAMTS13 or a function-blocking anti-VWF antibody was also evaluated in this pathological condition. Greater renal blood flow and lower serum creatinine were observed after reperfusion in VWF-KO mice compared with wild-type (WT) mice. Histological analysis also revealed a significantly lower degree of tubular damage and neutrophil infiltration in kidney tissues of VWF-KO mice. Both human recombinant ADAMTS13 and a function-blocking anti-VWF antibody significantly improved renal blood flow, renal function and histological findings in WT mice. Our results indicate that VWF plays a role in the pathogenesis of AKI. Proper functional regulation of VWF may improve the microcirculation and vessel function in the kidney, suggesting a novel therapeutic option against AKI.博士(医学)・甲第744号・令和2年3月16日© The Author(s) 2019. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

    Associations among Preoperative Malnutrition, Muscle Loss, and Postoperative Walking Ability in Intertrochanteric Fractures: A Retrospective Study

    Get PDF
    Sarcopenia and malnutrition are increasing in older adults and are reported risk factors for functional impairment after hip fracture surgery. This study aimed to investigate the associations between skeletal muscle mass loss, malnutrition, and postoperative walking ability in patients with hip fracture. We retrospectively reviewed patients who underwent intertrochanteric fracture surgery at our institute. The psoas muscle index, controlling nutritional status score, and functional ambulation category (FAC) were used to evaluate skeletal muscle mass, nutritional status, and walking ability, respectively. Six months after surgery, walking ability was assessed as either “gait disturbance” or “independent gait”. Multivariate binomial logistic regression analysis, with skeletal muscle mass, nutritional status, and other factors, was used to predict the risk of being assigned to the gait disturbance group. This study included 95 patients (mean age, 85.2 years; 70 women). Sixty-six patients had low skeletal muscle mass, 35 suffered from malnutrition, and 28 had both. Malnutrition and low skeletal muscle mass were significantly associated with postoperative gait disturbance (FAC < 3). Preoperative low skeletal muscle mass and malnutrition were risk factors for postoperative poor walking ability. Further preventive interventions focusing on skeletal muscle mass and nutritional status are required

    Development, Characteristics and Durability of Dye-Sensitized Solar Cell

    Full text link
    The DSSC 120 x 120 mm square sub-module with high conversion efficiency, excellent high temperature durability was fabricated using the new ruthenium-complex dye J2 which was developed by us, most appropriate Ti02 nano-particles, suited electrolyte containing iodine, the improved sealant, protective material of collecting grids. By assembling many sub-modules, large size of modules and also see-through type DSSC modules were developed. By the study of characteristics of DSSC on the incident angle of light and temperature, the advantage of DSSC has been discussed comparing with other Si solar cells

    Improved detectability of small-bowel lesions via capsule endoscopy with computed virtual chromoendoscopy: A pilot study

    Get PDF
    Objective. Real-time video capsule endoscopy (CE) with flexible spectral imaging color enhancement (FICE) improves visibility of small-bowel lesions. This article aims to clarify whether CE-FICE also improves detectability of small-bowel lesions. Patients and methods. A total of 55 patients who underwent CE at Hiroshima University Hospital during the period November 2009 through March 2010 were enrolled in the study. Five patients were excluded from the study because residues and transit delays prevented sufficient evaluation. Thus, 50 patients participated. Two experienced endoscopists (each having interpreted more than 50 capsule videos) analyzed the images. One interpreted conventional capsule videos; the other, blinded to interpretation of the conventional images, interpreted CE-FICE images obtained at settings 1-3 (setting 1: red 595 nm, green 540 nm, blue 535 nm; setting 2: red 420 nm, green 520 nm, blue 530 nm; setting 3: red 595 nm, green 570 nm, blue 415 nm). Lesions were classified as angioectasia, erosion, ulceration, or tumor. Detectability was compared between the two modalities. Time taken to interpret the capsule videos was also determined. Results. Seventeen angioectasias were identified by conventional CE; 48 were detected by CE-FICE at setting 1, 45 at setting 2, and 24 at setting 3, with significant differences at settings 1 and 2 (p = 0.0003, p < 0.0001, respectively). Detection of erosion, ulceration, and tumor did not differ statistically between conventional CE and CE-FICE, nor did interpretation time (conventional CE 36 ± 6.9 min; CE-FICE setting 1, 36 ± 6.4 min; setting 2, 38 ± 5.8 min; setting 3, 35 ± 6.7 min). Conclusions. CE-FICE is superior in the lesion detection in comparison with conventional CE and improves detection of angioectasia

    The Quiescent Intracluster Medium in the Core of the Perseus Cluster

    Get PDF
    Clusters of galaxies are the most massive gravitationally-bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and a host of astrophysical processes. Knowledge of the dynamics of the pervasive hot gas, which dominates in mass over stars in a cluster, is a crucial missing ingredient. It can enable new insights into mechanical energy injection by the central supermassive black hole and the use of hydrostatic equilibrium for the determination of cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50 million K diffuse hot plasma filling its gravitational potential well. The Active Galactic Nucleus of the central galaxy NGC1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These likely induce motions in the intracluster medium and heat the inner gas preventing runaway radiative cooling; a process known as Active Galactic Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus cluster core, which reveal a remarkably quiescent atmosphere where the gas has a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s is found across the 60 kpc image of the cluster core. Turbulent pressure support in the gas is 4% or less of the thermodynamic pressure, with large scale shear at most doubling that estimate. We infer that total cluster masses determined from hydrostatic equilibrium in the central regions need little correction for turbulent pressure.Comment: 31 pages, 11 Figs, published in Nature July
    corecore