7,914 research outputs found

    Effect of disorder outside the CuO2_{2} planes on TcT_{c} of copper oxide superconductors

    Full text link
    The effect of disorder on the superconducting transition temperature TcT_{c} of cuprate superconductors is examined. Disorder is introduced into the cation sites in the plane adjacent to the CuO2_{2} planes of two single-layer systems, Bi2.0_{2.0}Sr1.6_{1.6}Ln0.4_{0.4}CuO6+δ_{6+\delta} and La1.85−y_{1.85-y}Ndy_{y}Sr0.15_{0.15}CuO4_{4}. Disorder is controlled by changing rare earth (Ln) ions with different ionic radius in the former, and by varying the Nd content in the latter with the doped carrier density kept constant. We show that this type of disorder works as weak scatterers in contrast to the in-plane disorder produced by Zn, but remarkably reduces TcT_{c} suggesting novel effects of disorder on high-TcT_{c} superconductivity.Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let

    Temporal relation between quiet-Sun transverse fields and the strong flows detected by IMaX/SUNRISE

    Full text link
    Localized strongly Doppler-shifted Stokes V signals were detected by IMaX/SUNRISE. These signals are related to newly emerged magnetic loops that are observed as linear polarization features. We aim to set constraints on the physical nature and causes of these highly Doppler-shifted signals. In particular, the temporal relation between the appearance of transverse fields and the strong Doppler shifts is analyzed in some detail. We calculated the time difference between the appearance of the strong flows and the linear polarization. We also obtained the distances from the center of various features to the nearest neutral lines and whether they overlap or not. These distances were compared with those obtained from randomly distributed points on observed magnetograms. Various cases of strong flows are described in some detail. The linear polarization signals precede the appearance of the strong flows by on average 84+-11 seconds. The strongly Doppler-shifted signals are closer (0.19") to magnetic neutral lines than randomly distributed points (0.5"). Eighty percent of the strongly Doppler-shifted signals are close to a neutral line that is located between the emerging field and pre-existing fields. That the remaining 20% do not show a close-by pre-existing field could be explained by a lack of sensitivity or an unfavorable geometry of the pre-existing field, for instance, a canopy-like structure. Transverse fields occurred before the observation of the strong Doppler shifts. The process is most naturally explained as the emergence of a granular-scale loop that first gives rise to the linear polarization signals, interacts with pre-existing fields (generating new neutral line configurations), and produces the observed strong flows. This explanation is indicative of frequent small-scale reconnection events in the quiet Sun.Comment: 11 pages, 8 figure

    Gauge-Higgs Unification and Quark-Lepton Phenomenology in the Warped Spacetime

    Full text link
    In the dynamical gauge-Higgs unification of electroweak interactions in the Randall-Sundrum warped spacetime the Higgs boson mass is predicted in the range 120 GeV -- 290 GeV, provided that the spacetime structure is determined at the Planck scale. Couplings of quarks and leptons to gauge bosons and their Kaluza-Klein (KK) excited states are determined by the masses of quarks and leptons. All quarks and leptons other than top quarks have very small couplings to the KK excited states of gauge bosons. The universality of weak interactions is slightly broken by magnitudes of 10−810^{-8}, 10−610^{-6} and 10−210^{-2} for μ\mu-ee, τ\tau-ee and tt-ee, respectively. Yukawa couplings become substantially smaller than those in the standard model, by a factor |\cos \onehalf \theta_W| where θW\theta_W is the non-Abelian Aharonov-Bohm phase (the Wilson line phase) associated with dynamical electroweak symmetry breaking.Comment: 34 pages, 7 eps files, comments and a reference adde

    Direct evaporative cooling of 41K into a Bose-Einstein condensate

    Full text link
    We have investigated the collisional properties of 41K atoms at ultracold temperature. To show the possibility to use 41K as a coolant, a Bose-Einstein condensate of 41K atoms in the stretched state (F=2, m_F=2) was created for the first time by direct evaporation in a magnetic trap. An upper bound of three body loss coefficient for atoms in the condensate was determined to be 4(2) 10^{-29} cm -6 s-1. A Feshbach resonance in the F=1, m_F=-1 state was observed at 51.42(5) G, which is in good agreement with theoretical prediction.Comment: 4 pages, 4 figure

    The small-scale structure of photospheric convection retrieved by a deconvolution technique applied to Hinode/SP data

    Full text link
    Solar granules are bright patterns surrounded by dark channels called intergranular lanes in the solar photosphere and are a manifestation of overshooting convection. Observational studies generally find stronger upflows in granules and weaker downflows in intergranular lanes. This trend is, however, inconsistent with the results of numerical simulations in which downflows are stronger than upflows through the joint action of gravitational acceleration/deceleration and pressure gradients. One cause of this discrepancy is the image degradation caused by optical distortion and light diffraction and scattering that takes place in an imaging instrument. We apply a deconvolution technique to Hinode/SP data in an attempt to recover the original solar scene. Our results show a significant enhancement in both, the convective upflows and downflows, but particularly for the latter. After deconvolution, the up- and downflows reach maximum amplitudes of -3.0 km/s and +3.0 km/s at an average geometrical height of roughly 50 km, respectively. We found that the velocity distributions after deconvolution match those derived from numerical simulations. After deconvolution the net LOS velocity averaged over the whole FOV lies close to zero as expected in a rough sense from mass balance.Comment: 32 pages, 13 figures, accepted for publication in Ap

    Photometric Properties of Long-period Variables in the Large Magellanic Cloud

    Get PDF
    Approximately four thousand light curves of red variable stars in the LMC were selected from the 2.3-years duration MOA database by a period analysis using the Phase Dispersion Minimization method. Their optical features (amplitudes, periodicities, position in CMD) were investigated. Stars with large amplitues and high periodicities were distributed on the only one strip amongst multiple structure on the LMC period-luminosity relation. In the CMD, the five strips were located in the order of the period. The stars with characterized light curves were also discussed.Comment: 8 pages, 5 figures, Proceeding of WS on Mass-Losing Pulsating Stars and Their Circumstellar Matter, Sendai, Japa
    • …
    corecore