79 research outputs found
Syntheses and Self-assembling Behaviors of Pentagonal Conjugates of Tryptophane Zipper-Forming Peptide
Pentagonal conjugates of tryptophane zipper-forming peptide (CKTWTWTE) with a pentaazacyclopentadecane core (Pentagonal-Gly-Trpzip and Pentagonal-Ala-Trpzip) were synthesized and their self-assembling behaviors were investigated in water. Pentagonal-Gly-Trpzip self-assembled into nanofibers with the width of about 5 nm in neutral water (pH 7) via formation of tryptophane zipper, which irreversibly converted to nanoribbons by heating. In contrast, Pentagonal-Ala-Trpzip formed irregular aggregates in water
Bibliometric and scientometric analysis of PSMA-targeted radiotheranostics: knowledge mapping and global standing
PurposeBibliometric and scientometric analyses provide a structured approach to large amounts of data, enabling the prediction of research theme trends over time, the detection of shifts in the boundaries of disciplines, and the identification of the most productive countries, institutions and scholars. In the context of prostate-specific membrane antigen (PSMA)-targeted radiotheranostics, no bibliometric or scientometric analysis has been published thus far. Therefore, this study was conducted to identify key contributors to the literature, assess the global scientific production of related research, and possibly predict future development patterns.MethodsScientometrics and bibliometrics were utilized to analyze the current body of knowledge while tracking its evolution to support scientific decision-making comprehensively and systematically. Science mapping techniques were employed to visualize research activities. Two different tools, Tableau and VOSviewer, were utilized, with VOSviewer being deemed the most suitable for the research objectives. The Web of Science (WoS) was used as the principal database for the searches.ResultsThrough the search process over a period of 30 years (January 1993–January 2023), 694 original studies in the English language were subjected to comprehensive analysis. By employing bibliometric and scientometric methods, multiple networks were created that mapped various concepts, such as publication trends, leading countries, cocitations, coauthorship among researchers and scientists, as well as coauthorship among organizations and funding agencies. This study revealed the evolutionary patterns, trends, outliers, and key players in the PSMA field, which enabled a more nuanced understanding of the research landscape.ConclusionThis research contributes to the enrichment of knowledge on PSMA-targeted radiotheranostics through detailed global bibliometric and scientometric analyses. It stresses the necessity for the development of communication platforms, the establishment of supportive infrastructures, and the implementation of proactive solutions to address emerging challenges. This study offers a significant resource for delineating effective strategies and identifying prominent funding bodies essential for continuous advancements in the field of PSMA-based diagnosis and therapy for prostate cancer. It is vital to sustain this momentum to ensure further progress in this pioneering area
Peptide Nanospheres Self-Assembled from a Modified β-Annulus Peptide of Sesbania Mosaic Virus
A novel β-annulus peptide of Sesbania mosaic virus bearing an FKFE sequence at the C terminus was synthesized, and its self-assembling behavior in water was investigated. Dynamic light scattering and transmission electron microscopy showed that the β-annulus peptide bearing an FKFE sequence self-assembled into approximately 30 nm nanospheres in water at pH 3.8, whereas the β-annulus peptide without the FKFE sequence afforded only irregular aggregates. The peptide nanospheres possessed a definite critical aggregation concentration (CAC = 26 μM), above which the size of nanospheres were nearly unaffected by the peptide concentration. The formation of peptide nanospheres was significantly affected by pH; the peptide did not form any assemblies at pH 2.2 whereas larger aggregates were formed at pH 6.4–11.6
Liquid-Based Multijunction Molecular Solar Thermal Energy Collection Device
Photoswitchable molecules-based solar thermal energy storage system (MOST) can potentially be a route to store solar energy for future use. Herein, the use of a multijunction MOST device that combines various photoswitches with different onsets of absorption to push the efficiency limit on solar energy collection and storage is explored. With a parametric model calculation, it is shown that the efficiency limit of MOST concept can be improved from 13.0% to 18.2% with a double-junction system and to 20.5% with a triple-junction system containing ideal, red-shifted MOST candidates. As a proof-of-concept, the use of a three-layered MOST device is experimentally demonstrated. The device uses different photoswitches including a norbornadiene derivative, a dihydroazulene derivative, and an azobenzene derivative in liquid state with different MOSTproperties, to increase the energy capture and storage behavior. This conceptional device introduces a new way of thinking and designing optimal molecular candidates for MOST, as much improvement can be made by tailoring molecules to efficiently store solar energy at specific wavelengths
Self-assembly of Ni-NTA-modified β-Annulus Peptides into Artificial Viral Capsids and Encapsulation of His-tagged Proteins
β-Annulus peptide bearing Cys at the N-terminal from tomato bushy stunt virus was synthesised using a standard Fmoc-protected solid-phase method, and the petide was modified with Ni-NTA at the N-terminal. The Ni-NTA-modified β-annulus peptide self-assembled into virus-like nanocapsules of approximately 40 nm in diameter. The critical aggregation concentration of these nanocapsules in 10 mM Tris-HCl buffer (pH 7.3) at 25°C was 0.053 μM, which is 470 times lower than that of unmodified β-annulus peptides. Moreover, size exclusion chromatography of the peptide assembly indicated encapsulation of His-tagged green fluorescent protein in the Ni-NTA-modified artificial viral capsid
Demonstration of an azobenzene derivative based solar thermal energy storage system
Molecules capable of reversible storage of solar energy have recently attracted increasing interest, and are often referred to as molecular solar thermal energy storage (MOST) systems. Azobenzene derivatives have great potential as an active MOST candidate. However, an operating lab scale experiment including solar energy capture/storage and release has still not been demonstrated. In the present work, a liquid azobenzene derivative is tested comprehensively for this purpose. The system features several attractive properties, such as a long energy storage half-life (40 h) at room temperature, as well as an excellent robustness demonstrated by optically charging and discharging the molecule over 203 cycles without any sign of degradation (total operation time of 23 h). Successful measurements of solar energy storage under simulated sunlight in a microfluidic chip device have been achieved. The identification of two heterogeneous catalyst systems during testing enabled the construction of a fixed bed flow reactor demonstrating catalyzed back-conversion from cis to trans azobenzene at room temperature under flow conditions. The working mechanism of the more suitable catalytic candidate was rationalized by detailed density functional theory (DFT) calculations. Thus, this work provides detailed insights into the azobenzene based MOST candidate and identifies where the system has to be improved for future solar energy storage applications
Photon Upconverting Solid Films with Improved Efficiency for Endowing Perovskite Solar Cells with Near‐Infrared Sensitivity
Perovskite solar cells have emerged as the next‐generation high‐efficiency solar cell, but their absorption is mostly limited to the visible (vis) range. One possible solution is to integrate near‐infrared (NIR)‐to‐vis photon upconversion (UC). Herein, we show the first example of endowing perovskite solar cells with NIR sensitivity by using solid films showing NIR‐to‐vis UC based on triplet‐triplet annihilation (TTA). A high TTA‐UC efficiency of 4.1±0.3 % at an excitation intensity of 125 W/cm² is achieved by sensitizing a rubrene (acceptor) triplet with an osmium (Os) complex donor having singlet‐to‐triplet (S−T) absorption in the NIR range, and by increasing the fluorescence quantum yield through energy harvesting to a highly fluorescent collector. In particular, our spectroscopic studies indicate that the upconverted acceptor singlet energy is almost selectively transferred to the collector rather than being quenched by the donor. By attaching the TTA‐UC film behind a semi‐transparent perovskite solar cell, a photocurrent generation is observed under excitation at 938 nm
Recyclable optical bioplastics platform for solid state red light harvesting via triplet-triplet annihilation photon upconversion
Sustainable photonics applications of solid-state triplet-triplet annihilation photon upconversion (TTA-UC) are limited by a small UC spectral window, low UC efficiency in air, and non-recyclability of polymeric materials used. In a step to overcome these issues, we have developed new recyclable TTA-UC bioplastics by encapsulating TTA-UC chromophores liquid inside the semicrystalline gelatin films showing broad-spectrum upconversion (red/far-red to blue) with high UC efficiency in air. For this, we synthesized a new anionic annihilator, sodium-TIPS-anthracene-2-sulfonate (TIPS-AnS), that combined with red/far-red sensitizers (PdTPBP/Os(m-peptpy)2(TFSI)2), a liquid surfactant Triton X-100 reduced (TXr) and protein gelatin (G) formed red/far-red to blue TTA-UC bioplastic films just by air drying of their aqueous solutions. The G-TXr-TIPS-AnS-PdTPBP film showed record red to blue (633 to 478 nm) TTA-UC quantum yield of 8.5% in air. The high UC quantum yield has been obtained due to the fluidity of dispersed TXr containing chromophores and oxygen blockage by gelatin fibers that allowed efficient diffusion of triplet excited chromophores. Further, the G-TXr-TIPS-AnS-Os(m-peptpy)2(TFSI)2 bioplastic film displayed far-red to blue (700-730 nm to 478 nm) TTA-UC, demonstrating broad-spectrum photon harvesting. Finally, we demonstrated the recycling of G-TXr-TIPS-AnS-PdTPBP bioplastics by developing a downstream approach that gives new directions for designing future recyclable photonics bioplastic materials.Pankaj Bharmoria acknowledges Marie Skłodowska-Curie Actions – European Commission post-doctoral grant (NIRLAMS, Grant agreement ID: 844972) for research funding. Hakan Bildirir and Kasper Moth-Poulsen acknowledges funding from the Swedish Energy Agency, the Swedish Research Agency FORMAS, the Swedish Strategic Foundation, and the K & A Wallenberg foundation. Bo Albinsson acknowledges Swedish Energy Agency and the Swedish Research Council (VR). Nobuhiro Yanai acknowledges JSPS KAKENHI (grant numbers JP20H02713, JP20K21211, JP20H05676, JP18J21140).With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe
Far-red triplet sensitized Z-to-E photoswitching of azobenzene in bioplastics
We report the first example of direct far-red triplet sensitized molecular photoswitching in a condensed phase wherein a liquid azobenzene derivative (Azo1) co-assembled within a liquid surfactant-protein film undergoes triplet sensitized Z-to-E photoswitching upon far-red/red light excitation in air. The role of triplet sensitization in photoswitching has been confirmed by quenching of sensitizer phosphorescence by Z-Azo1 and temperature-dependent photoswitching experiments. Herein, we demonstrate new biosustainable fabrication designs to address key challenges in solid-state photoswitching, effectively mitigating chromophore aggregation and requirement of high energy excitations by dispersing the photoswitch in the trapped liquid inside the solid framework and by shifting the action spectrum from blue-green light (450-560 nm) to the far-red/red light (740/640 nm) region.Pankaj Bharmoria acknowledges the Marie Skłodowska-Curie Actions—European Commission post-doctoral grant (NIRLAMS, Grant agreement ID: 844972) for research funding. Bo Albinsson acknowledges the Swedish Energy Agency and the Swedish Research Council (VR). Nobuo Kimizuka acknowledges JSPS KAKENHI Grant Number JP20H05676. Kasper Moth-Poulsen acknowledges funding from the European Research Council (ERC), the Göran Gustafson Foundation, the Swedish Energy Agency, and the Swedish Research Council (VR). The authors would like to thank Monika Shamsabadi and Lidiya M. Muhammad for proofreading this manuscript.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe
- …