10,138 research outputs found

    Generalized Householder Transformations for the Complex Symmetric Eigenvalue Problem

    Full text link
    We present an intuitive and scalable algorithm for the diagonalization of complex symmetric matrices, which arise from the projection of pseudo--Hermitian and complex scaled Hamiltonians onto a suitable basis set of "trial" states. The algorithm diagonalizes complex and symmetric (non--Hermitian) matrices and is easily implemented in modern computer languages. It is based on generalized Householder transformations and relies on iterative similarity transformations T -> T' = Q^T T Q, where Q is a complex and orthogonal, but not unitary, matrix, i.e, Q^T equals Q^(-1) but Q^+ is different from Q^(-1). We present numerical reference data to support the scalability of the algorithm. We construct the generalized Householder transformations from the notion that the conserved scalar product of eigenstates Psi_n and Psi_m of a pseudo-Hermitian quantum mechanical Hamiltonian can be reformulated in terms of the generalized indefinite inner product [integral of the product Psi_n(x,t) Psi_m(x,t) over dx], where the integrand is locally defined, and complex conjugation is avoided. A few example calculations are described which illustrate the physical origin of the ideas used in the construction of the algorithm.Comment: 14 pages; RevTeX; font mismatch in Eqs. (3) and (15) is eliminate

    Improved bounds for the number of forests and acyclic orientations in the square lattice

    Get PDF
    In a recent paper Merino and Welsh (1999) studied several counting problems on the square lattice LnL_n. The authors gave the following bounds for the asymptotics of f(n)f(n), the number of forests of LnL_n, and α(n)\alpha(n), the number of acyclic orientations of LnL_n: 3.209912limnf(n)1/n23.841613.209912 \leq \lim_{n\rightarrow\infty} f(n)^{1/n^2} \leq 3.84161 and 22/7limnα(n)3.7092522/7 \leq \lim_{n\rightarrow\infty} \alpha(n) \leq 3.70925. In this paper we improve these bounds as follows: 3.64497limnf(n)1/n23.741013.64497 \leq \lim_{n\rightarrow\infty} f(n)^{1/n^2} \leq 3.74101 and 3.41358limnα(n)3.554493.41358 \leq \lim_{n\rightarrow\infty} \alpha(n) \leq 3.55449. We obtain this by developing a method for computing the Tutte polynomial of the square lattice and other related graphs based on transfer matrices

    A kinetic model of radiating electrons

    Get PDF
    A kinetic theory is developed to describe radiating electrons whose motion is governed by the Lorentz-Dirac equation. This gives rise to a generalized Vlasov equation coupled to an equation for the evolution of the physical submanifold of phase space. The pathological solutions of the 1-particle theory may be removed by expanding the latter equation in powers of τ ≔ q 2/6πm. The radiation-induced change in entropy is explored and its physical origin is discussed. As a simple demonstration of the theory, the radiative damping rate of longitudinal plasma waves is calculated

    Estimating Small Area Income Deprivation: An Iterative Proportional Fitting Approach

    Get PDF
    Small area estimation and in particular the estimation of small area income deprivation has potential value in the development of new or alternative components of multiple deprivation indices. These new approaches enable the development of income distribution threshold based as opposed to benefit count based measures of income deprivation and so enable the alignment of regional and national measures such as the Households Below Average Income with small area measures. This paper briefly reviews a number of approaches to small area estimation before describing in some detail an iterative proportional fitting based spatial microsimulation approach. This approach is then applied to the estimation of small area HBAI rates at the small area level in Wales in 2003-5. The paper discusses the results of this approach, contrasts them with contemporary ‘official’ income deprivation measures for the same areas and describes a range of ways to assess the robustness of the results

    PHYSICS OF SPORTS: AN INTERACTIVE VIDEODISC FOR ANALYZING THE MOTION OF ATHLETES

    Get PDF
    Physics teachers have long used visual media to show how principles of physics are applied to everyday events. Visual presentation seems to motivate the students and improve their understanding of the concepts being taught. The approach taken in most of these presentations has been a qualitative one. Few quantitative visual presentations have been used in instructional settings, particularly in the laboratory, with some notable exceptions (Super-8 Film Series for Project Physics, 1971). The difficulty of working with films and slides limits the amount of quantitative information that can be acquired from them

    Chemical control of root maggots in early cabbage

    Get PDF
    n/

    Further Evidence on Secondary Task Interference in Tracking

    Get PDF
    Influence of secondary task interference in trackin
    corecore