46 research outputs found

    Venusian extended ejecta deposits as time-stratigraphic markers

    Get PDF
    Use of impact crater ejects at time-stratigraphic markers was established during lunar geologic mapping efforts. The basic premise is that the deposition of impact ejecta, either by itself or mixed with impact-excavated material, is superimposed on a surface. The deposit becomes an observable, mappable unit produced in a single instant in geologic time. Up to two-thirds of Venus craters exhibit extended ejecta deposits. A reconnaissance survey of 336 craters (about 40 percent of the total population) was conducted. About half the craters examined were located in and around the Beta-Atla-Themis region, and half were spread over the western hemisphere of the planet. The survey was conducted using primarily C1-MIDR images. The preliminary survey shows: (1) of the 336 craters, 223 were found to have extended ejecta deposits. This proportion is higher than that found in other Venus crater databases by up to a factor of 2. (2) 53 percent of all extended ejecta craters were unambiguously superimposed on all volcanic and tectonic units. Crater Annia Faustina's associated parabolic ejecta deposit is clearly superimposed on volcanic flows coming from Gula Mons to the west. Parabola material from Faustina has covered the lava flows, smoothing the surface and reducing its specific backscatter cross section. The stratigraphy implies that the parabola material is the youngest observable unit in the region. (3) 12 percent of extended ejecta deposits are superimposed by volcanic materials. Crater Hwangcini has extended ejecta that has been covered by volcanic flows from a dome field to the northwest, implying that the volcanic units were emplaced subsequent to the ejecta deposit and are the youngest units in the locality. (4) It is difficult to determine the stratigraphic relationships of the remaining extended ejecta deposits in SAR at C1-MIDR resolution. Examination of higher resolution images and application of the other Magellan datasets in systematic manner should resolve most of the ambiguous cases. Results from the preliminary survey indicate that extended ejecta deposits are effective time-statigraphic markers for the localities. If stratigraphic relationships between the deposits and surrounding units are studied on a case-by-case basis over the whole planet, they should provide useful constraints on Venus history and development of the surface through time. The continuation of the research will expand the study to include the entire crater population and the Magellan emissivity, altimetry, reflectivity, and rms slope datasets

    Comment on 'The Global Resurfacing of Venus' by R. G. Strom, G.G. Schaber, and D.D. Dawson

    Get PDF
    The distribution of impact craters on Venus has been the subject of a great deal of analysis since the return of Magellan data. Phillips el al. (1992) performed Monte Carlo two-dimensional (2-D) modeling of the areal distribution of craters, and the results of that exercise allowed a restricted, but still quite large, range of possible planetary resurfacing histories, including the possibility that the crater, were emplaced on a geologically inactive planet. However, the nonrandom distribution of embayed and deformed craters (Phillips el al., 1992), the hypsometric distribution of craters (Herrick and Phillips, 1994), the varied degradation states of craters (Izenberg et al., 1994), their nonrandom distribution with different geologic terrain types (Namiki and Solomon, 1994; Price et al, 1994), and three-dimensional resurfacing modeling (Bullock el al., 1993) all seem to argue against that particular possibility. In contrast, Strom el al. (1994) have collected a refined and more comprehensive data set of impact features, and they input these data into more sophisticated 2-D Monte Carlo modeling and statistical analyses of the areal distribution of craters, the hypsometric distribution of craters, and the number of embayed craters. They concluded that 'Venus experienced a global resurfacing event about 300 m.y. ago followed by a dramatic reduction of volcanism and tectonism. This global resurfacing event ended abruptly (less than 10 m.y.). The present crater population has accumulated since then and remains largely intact . . . only about 4%-6% of the planet has been volcanically resurfaced since the global event . . .' If these conclusions are well-founded, this work certainly represents a significant advancement in restricting tile number of plausible resurfacing histories for the planet. If Strom et al. (1994) are correct, it would also mean that all of the other aforementioned works are in error to various degrees, or at least represent overzealous interpretation of the data. However, we have identified apparent flaws in the observations, modeling, and interpretations presented by Strom el al. (1994) that lead us to question whether their conclusions are warranted. We limit our comments to three areas of their analysis: (1) observations pertaining to the number and area of disrupted and pristine craters and crater-related features, (2) modeling of the areal and elevation distribution of craters, and (3) interpretations of resurfacing models

    A first-order model for impact crater degradation on Venus

    Get PDF
    A first-order impact crater aging model is presented based on observations of the global crater population of Venus. The total population consists of 879 craters found over the approximately 98 percent of the planet that has been mapped by the Magellan spacecraft during the first three cycles of its mission. The model is based upon three primary aspects of venusian impact craters: (1) extended ejecta deposits (EED's); (2) crater rims and continuous ejecta deposits; and (3) crater interiors and floors

    Mercury's Exosphere During MESSENGER's Second Flyby: Detection of Magnesium and Distinct Distributions of Neutral Species

    Get PDF
    During MESSENGER's second Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer observed emission from Mercury's neutral exosphere. These observations include the first detection of emission from magnesium. Differing spatial distributions for sodium, calcium, and magnesium were revealed by observations beginning in Mercury's tail region, approximately 8 Mercury radii anti-sunward of the planet, continuing past the nightside, and ending near the dawn terminator. Analysis of these observations, supplemented by observations during the first Mercury flyby as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes

    The fundamental connections between the Solar System and exoplanetary science

    Get PDF
    Over the past several decades, thousands of planets have been discovered outside our Solar System. These planets exhibit enormous diversity, and their large numbers provide a statistical opportunity to place our Solar System within the broader context of planetary structure, atmospheres, architectures, formation, and evolution. Meanwhile, the field of exoplanetary science is rapidly forging onward toward a goal of atmospheric characterization, inferring surface conditions and interiors, and assessing the potential for habitability. However, the interpretation of exoplanet data requires the development and validation of exoplanet models that depend on in situ data that, in the foreseeable future, are only obtainable from our Solar System. Thus, planetary and exoplanetary science would both greatly benefit from a symbiotic relationship with a two way flow of information. Here, we describe the critical lessons and outstanding questions from planetary science, the study of which are essential for addressing fundamental aspects for a variety of exoplanetary topics. We outline these lessons and questions for the major categories of Solar System bodies, including the terrestrial planets, the giant planets, moons, and minor bodies. We provide a discussion of how many of these planetary science issues may be translated into exoplanet observables that will yield critical insight into current and future exoplanet discoveries

    Triton Haze Analogs: The Role of Carbon Monoxide in Haze Formation

    Get PDF
    Triton is the largest moon of the Neptune system and possesses a thin nitrogen atmosphere with trace amounts of carbon monoxide and methane, making it of similar composition to that of the dwarf planet Pluto. Like Pluto and Saturn\u27s moon Titan, Triton has a haze layer thought to be composed of organics formed through photochemistry. Here, we perform atmospheric chamber experiments of 0.5% CO and 0.2% CH4 in N2 at 90 K and 1 mbar to generate Triton haze analogs. We then characterize the physical and chemical properties of these particles. We measure their production rate, their bulk composition with combustion analysis, their molecular composition with very high resolution mass spectrometry, and their transmission and reflectance from the optical to the near-infrared with Fourier Transform Infrared (FTIR) Spectroscopy. We compare these properties to existing measurements of Triton\u27s tenuous atmosphere and surface, as well as contextualize these results in view of all the small, hazy, nitrogen-rich worlds of our solar system. We find that carbon monoxide present at greater mixing ratios than methane in the atmosphere can lead to significantly oxygen- and nitrogen-rich haze materials. These Triton haze analogs have clear observable signatures in their near-infrared spectra, which may help us differentiate the mechanisms behind haze formation processes across diverse solar system bodies
    corecore