44 research outputs found

    Inverse opal ceria–zirconia: architectural engineering for heterogeneous catalysis

    Get PDF
    The application of inverse opal structured materials is extended to the ceria–zirconia (Ce_(0.5)Zr_(0.5)O_2) system and the significance of material architecture on heterogeneous catalysis, specifically, chemical oxidation, is examined

    Microglia activation in a model of retinal degeneration and TUDCA neuroprotective effects

    Get PDF
    Background: Retinitis pigmentosa is a heterogeneous group of inherited neurodegenerative retinal disorders characterized by a progressive peripheral vision loss and night vision difficulties, subsequently leading to central vision impairment. Chronic microglia activation is associated with various neurodegenerative diseases including retinitis pigmentosa. The objective of this study was to quantify microglia activation in the retina of P23H rats, an animal model of retinitis pigmentosa, and to evaluate the therapeutic effects of TUDCA (tauroursodeoxycholic acid), which has been described as a neuroprotective compound. Methods: For this study, homozygous P23H line 3 and Sprague-Dawley (SD) rats were injected weekly with TUDCA (500 mg/kg, ip) or vehicle (saline) from 20 days to 4 months old. Vertical retinal sections and whole-mount retinas were immunostained for specific markers of microglial cells (anti-CD11b, anti-Iba1 and anti-MHC-II). Microglial cell morphology was analyzed and the number of retinal microglial was quantified. Results: Microglial cells in the SD rat retinas were arranged in regular mosaics homogenously distributed within the plexiform and ganglion cell layers. In the P23H rat retina, microglial cells increased in number in all layers compared with control SD rat retinas, preserving the regular mosaic distribution. In addition, a large number of amoeboid CD11b-positive cells were observed in the P23H rat retina, even in the subretinal space. Retinas of TUDCA-treated P23H animals exhibited lower microglial cell number in all layers and absence of microglial cells in the subretinal space. Conclusions: These results report novel TUDCA anti-inflammatory actions, with potential therapeutic implications for neurodegenerative diseases, including retinitis pigmentosa.This research was supported by grants from the Spanish Ministry of Economy and Competitiveness-FEDER (BFU2012-36845), Instituto de Salud Carlos III (RETICS RD12/0034/0010), Organización Nacional de Ciegos Españoles (ONCE), FUNDALUCE, Asociación Retina Asturias and Fundación Jesús de Gangoiti

    Experimental demonstration of a synthetic aperture compression scheme for multi-Petawatt high-energy lasers

    Get PDF
    International audienceWe present the experimental demonstration of a subaperture compression scheme achieved in the PETAL (PETawatt Aquitaine Laser) facility. We evidence that by dividing the beam into small subapertures fitting the available grating size, the sub-beam can be individually compressed below 1 ps, synchronized below 50 fs and then coherently added thanks to a segmented mirror. " Split-aperture laser pulse compressor design tolerant to alignment and line-density differences

    Evolution of the magnetic and magnetotransport properties of the Ga-substituted manganite compounds La<sub>2-x</sub>Sr<sub>x</sub>MnGaO<sub>6</sub>

    No full text
    We report a series of magnetic and magnetotransport studies performed on Ga-substituted manganite compounds La2-xSrxMnGaO6 (x≤0.7). We replace half of the Mn ions in LaMnO3 with diamagnetic ions Ga3+ and find that the system transforms into a ferromagnet as the result of local coherent and incoherent distortions. Following additional doping with Sr ions we find that the La2-xSrxMnGaO6 compounds remain ferromagnetic up to x∼0.3 but for higher concentrations the competition between the ferromagnetic and antiferromagnetic superexchange interactions, together with the randomness in distribution of the magnetic ions, lead to magnetic frustration, cluster-glass and spin-glass behavior. All compounds are insulating and the activation energy decreases almost linearly with x. μSR measurements suggest the existence of short-range magnetic correlations in the high-temperature region. We measure a significant increase in the muon-spin relaxation rate at low temperatures due to fluctuations of random internal magnetic fields. The observed magnetoresistance in the high-temperature region is mainly a consequence of the reduction of the spin disorder on a local scale, and is as high as 50% in 14 T and T>100 K for samples with x=0.3 and x=0.5
    corecore