1,712 research outputs found

    Influence of pulse waveform and frequency on evoked torque, stimulation efficiency, and discomfort in healthy subjects

    Get PDF
    The aim of the study was to determine the influence of neuromuscular electrical stimulation pulse waveform and frequency on evoked torque, stimulation efficiency, and discomfort at two neuromuscular electrical stimulation levels. Design: This is a repeated measures study. The quadriceps muscle of 24 healthy men was stimulated at submaximal (neuromuscular electrical stimulationsub) and maximal (neuromuscular electrical stimulationmax) levels using two pulse waveforms (symmetrical, asymmetrical) and three pulse frequencies (60, 80, 100 Hz). Repeated measures analysis of variance and effect sizes were used to verify the effect of pulse waveform and pulse frequency on stimulation efficiency (evoked torque/ current intensity) and discomfort and to assess the magnitude of the differences, respectively. Results: Stimulation efficiency was higher for symmetrical (neuromuscular electrical stimulationsub = 0.88 ± 0.21 Nm/mA; neuromuscular electrical stimulationmax = 1.27 ± 0.46 Nm/mA) compared with asymmetrical (neuromuscular electrical stimulationsub = 0.77 ± 0.21 Nm/mA; neuromuscular electrical stimulationmax = 1.02 ± 0.34 Nm/mA; P ≤ 0.001; effect size = 0.56–0.66) but did not significantly differ between frequencies (P = 0.17). At both neuromuscular electrical stimulation levels, there were no statistically significant differences in discomfort between pulse waveforms or frequencies. Conclusions: The higher stimulation efficiency of symmetrical pulses suggests that this waveform would be preferred to asymmetrical pulses in clinical practice. Stimulation frequencies between 60 and 100 Hz can be used interchangeably because of similar efficiency and discomfort

    GC-selective DNA-binding antibiotic, Mithramycin A, reveals multiple points of control in the regulation of Hdm2 protein synthesis

    Get PDF
    The primary role of the Hdm2/Mdm2 oncoprotein is to regulate the levels and activity of the transcription factor p53. Hdm2 synthesis is itself tightly controlled and, as demonstrated by a recently described SNP (SNP309) in the hdm2-P2 promoter, minor variations in Hdm2 expression have phenotypic consequences on radiation sensitivity and cancer predisposition. To further define mechanisms regulating Hdm2 expression, we have investigated the effects of the GC-selective DNA-binding drug, Mithramycin A (MA) on hdm2 mRNA transcription, trafficking, and translation. Firstly we show that the constitutive hdm2-P1 promoter is inhibited by MA. We define, for the first time, the minimal sequence elements that are required for P1-promoter activity and identify those which confer MA sensitivity. Secondly, MA induces p53-dependent transcription from the hdm2-P2 promoter. Thirdly, and critically, MA also inhibits Hdm2 synthesis at the post-transcriptional level, with negative effects on hdm2 mRNA nuclear export and translation. This study highlights the complex interplay between the pathways that regulate Hdm2 protein synthesis in cancer cells, and furthermore emphasizes the export of hdm2 mRNA from the nucleus to the cytoplasm as a key point of control in this process.<br/><br/

    Evaluation of 2.1µm DFB lasers for space applications

    Full text link
    This paper presents the results obtained in the frame of an ESA-funded project called “Screening and Preevaluation of Shortwave Infrared Laser Diode for Space Application” with the objective of verifying the maturity of state of the art SWIR DFB lasers at 2.1µm to be used for space applications (mainly based on the occultation measurement principle and spectroscopy). The paper focus on the functional and environmental evaluation test plan. It includes high precision characterization, mechanical test (vibration and SRS shocks), thermal cycling, gamma and proton radiation tests, life test and some details of the Destructive Physical Analysis performed. The electro-optical characterization includes measurements of the tuning capabilities of the laser both by current and by temperature, the wavelength stability and the optical power versus laser current

    Continuous-wave operation of vertically emitting ring interband cascade lasers at room temperature

    Get PDF
    Funding: The authors are grateful for financial support received under Austrian Research Promotion Agency (FFG) project No. 1516332 (ATMO-SENSE).We present vertical light emission in continuous-wave mode from an interband cascade laser (ICL) at a record temperature of up to 38 °C. These results pave the way toward a more efficient and compact integration of this technology in mobile spectroscopic applications. Our approach employs ring cavity ICLs that are mounted epi-side down for efficient heat extraction from the devices. The vertical single-mode emission relies on a metallized second-order distributed-feedback grating designed for an emission wavelength of 3.8 μm. A single lateral mode operation is favored by a narrow waveguide width of 4 μm. Optical output powers of more than 6 mW were measured at 20 °C for rings with a diameter of ∼800 μm. At this temperature, the threshold current-density amounted to 0.60 kA/cm2 and the device showed continuous current and temperature tuning rates of 0.06 nm/mA and 0.37 nm/K, respectively.Publisher PDFPeer reviewe

    Tunable mid-infrared light sources based on intersubband transitions

    Get PDF
    This thesis describes how for the first time, unidirectional operation and coupled ring tuning were realised on a quantum cascade laser material; specifically on a new strain compensated In0.7Ga0.3As/AlAs0.6Sb0.4 grown on InP substrate and operates in pulsed mode in the 3-4 micron hydrocarbon absorption region. Unidirectional ring lasers have the advantages that, in the favoured emission direction, they can have up to double the quantum efficiency of bidirectional lasers and do not suffer from spatial hole burning. In this work, this operation was realised by incorporating an "S"-crossover waveguide into the ring cavity in a manner that it introduces non reciprocal loss and gain in the counter-clockwise (CCW) and clockwise (CW) directions respectively. The measured result showed higher quantum efficiency in the CW. In fact at 1.5 times the threshold current, 90 % of the light was emitted in the favoured CW. On the other hand, the coupled ring quantum cascade laser showed nearly single mode operation, with side mode suppression ratio ~22 dB. Continuous wavelength tuning of about 13 nm was observed from one of these devices, at a tuning rate of approximately 0.4 nm/mA

    Time is of the Essence: Machine Learning-based Intrusion Detection in Industrial Time Series Data

    Full text link
    The Industrial Internet of Things drastically increases connectivity of devices in industrial applications. In addition to the benefits in efficiency, scalability and ease of use, this creates novel attack surfaces. Historically, industrial networks and protocols do not contain means of security, such as authentication and encryption, that are made necessary by this development. Thus, industrial IT-security is needed. In this work, emulated industrial network data is transformed into a time series and analysed with three different algorithms. The data contains labeled attacks, so the performance can be evaluated. Matrix Profiles perform well with almost no parameterisation needed. Seasonal Autoregressive Integrated Moving Average performs well in the presence of noise, requiring parameterisation effort. Long Short Term Memory-based neural networks perform mediocre while requiring a high training- and parameterisation effort.Comment: Extended version of a publication in the 2018 IEEE International Conference on Data Mining Workshops (ICDMW

    Crystallization of the Wahnstr\"om Binary Lennard-Jones Liquid

    Full text link
    We report observation of crystallization of the glass-forming binary Lennard-Jones liquid first used by Wahnstr\"om [G. Wahnstr\"om, Phys. Rev. A 44, 3752 (1991)]. Molecular dynamics simulations of the metastable liquid on a timescale of microseconds were performed. The liquid crystallized spontaneously. The crystal structure was identified as MgZn_2. Formation of transient crystallites is observed in the liquid. The crystallization is investigate at different temperatures and compositions. At high temperature the rate of crystallite formation is the limiting factor, while at low temperature the limiting factor is growth rate. The melting temperature of the crystal is estimated to be T_m=0.93 at rho=0.82. The maximum crystallization rate of the A_2B composition is T=0.60+/-0.02.Comment: 4 pages, 4 figures; corrected typo

    Nanoscale Heat Transfer from Magnetic Nanoparticles and Ferritin in an Alternating Magnetic Field

    Get PDF
    Recent suggestions of nanoscale heat confinement on the surface of synthetic and biogenic magnetic nanoparticles during heating by radio frequency-alternating magnetic fields have generated intense interest because of the potential utility of this phenomenon for noninvasive control of biomolecular and cellular function. However, such confinement would represent a significant departure from the classical heat transfer theory. Here, we report an experimental investigation of nanoscale heat confinement on the surface of several types of iron oxide nanoparticles commonly used in biological research, using an all-optical method devoid of the potential artifacts present in previous studies. By simultaneously measuring the fluorescence of distinct thermochromic dyes attached to the particle surface or dissolved in the surrounding fluid during radio frequency magnetic stimulation, we found no measurable difference between the nanoparticle surface temperature and that of the surrounding fluid for three distinct nanoparticle types. Furthermore, the metalloprotein ferritin produced no temperature increase on the protein surface nor in the surrounding fluid. Experiments mimicking the designs of previous studies revealed potential sources of the artifacts. These findings inform the use of magnetic nanoparticle hyperthermia in engineered cellular and molecular systems
    corecore