8 research outputs found

    Seroepidemiology of Crimean-Congo Haemorrhagic Fever among cattle in Cameroon:Implications from a One Health perspective

    Get PDF
    BACKGROUND: Crimean-Congo Haemorrhagic Fever (CCHF) is a tick-borne viral zoonotic disease distributed across several continents and recognized as an ongoing health threat. In humans, the infection can progress to a severe disease with high fatality, raising public health concerns due to the limited prophylactic and therapeutic options available. Animal species, clinically unaffected by the virus, serve as viral reservoirs and amplifier hosts, and can be a valuable tool for surveillance. Little is known about the occurrence and prevalence of Crimean-Congo Haemorrhagic Fever Virus (CCHFV) in Cameroon. Knowledge on CCHFV exposure and the factors associated with its presence in sentinel species are a valuable resource to better understand transmission dynamics and assess local risks for zoonotic disease emergence. METHODS AND FINDINGS: We conducted a CCHFV serological survey and risk factor analysis for animal level seropositivity in pastoral and dairy cattle in the North West Region (NWR) and the Vina Division (VD) of the Adamawa Region in Cameroon. Seroprevalence estimates were adjusted for sampling design-effects and test performance. In addition, explanatory multivariable logistic regression mixed-effects models were fit to estimate the effect of animal characteristics, husbandry practices, risk contacts and ecological features on the serological status of pastoral cattle. The overall seroprevalence was 56.0% (95% CI 53.5–58.6) and 6.7% (95% CI 2.6–16.1) among pastoral and dairy cattle, respectively. Animals going on transhumance had twice the odds of being seropositive (OR 2.0, 95% CI 1.1–3.8), indicating that animal movements could be implicated in disease expansion. From an ecological perspective, absolute humidity (OR 0.6, 95% CI 0.4–0.9) and shrub density (OR 2.1, 95% CI 1.4–3.2) were associated with seropositivity, which suggests an underlying viral dynamic connecting vertebrate host and ticks in a complex transmission network. CONCLUSIONS: This study demonstrated high seroprevalence levels of CCHFV antibodies in cattle in Cameroon indicating a potential risk to human populations. However, current understanding of the underlying dynamics of CCHFV locally and the real risk for human populations is incomplete. Further studies designed using a One Health approach are required to improve local knowledge of the disease, host interactions and environmental risk factors. This information is crucial to better project the risks for human populations located in CCHFV-suitable ecological niches

    Bovine tuberculosis epidemiology in Cameroon, Central Africa, based on the interferon gamma assay

    Get PDF
    Despite sub-Saharan Africa (SSA) accounting for ~20% of the global cattle population, prevalence estimates and related risk factors of bovine tuberculosis (bTB) are still poorly described. The increased sensitivity of the IFN-γ assay and its practical benefits suggest the test could be useful to investigate bTB epidemiology in SSA. This study used a population-based sample to estimate bTB prevalence, identify risk factors and estimate the effective reproductive rate in Cameroonian cattle populations. A cross-sectional study was conducted in the North West Region (NWR) and the Vina Division (VIN) of Cameroon in 2013. A regional stratified sampling frame of pastoral cattle herds produced a sample of 1,448 cattle from 100 herds. In addition, a smaller cross-sectional study sampled 60 dairy cattle from 46 small-holder co-operative dairy farmers in the NWR. Collected blood samples were stimulated with bovine and avian purified protein derivatives, with extracted plasma screened using the IFN-γ enzyme-linked immunosorbent assay (Prionics Bovigam®). Design-adjusted population prevalences were estimated, and multivariable mixed-effects logistic regression models using Bayesian inference techniques identified the risk factors for IFN-γ positivity. Using the IFN-γ assay, the prevalence of bTB in the dairy cattle was 21.7% (95% CI: 11.2–32.2). The design-adjusted prevalence of bTB in cattle kept by pastoralists was 11.4% (95% CI: 7.6–17.0) in the NWR and 8.0% (95% CI: 4.7–13.0) in the VIN. A within-herd prevalence estimate for pastoralist cattle also supported that the NWR had higher prevalence herds than the VIN. Additionally, the estimates of the effective reproductive rate Rt were 1.12 for the NWR and 1.06 for the VIN, suggesting different transmission rates within regional cattle populations in Cameroon. For pastoral cattle, an increased risk of IFN-γ assay positivity was associated with being male (OR = 1.89; 95% CI:1.15–3.09), increasing herd size (OR = 1.02; 95% CI:1.01–1.03), exposure to the bovine leucosis virus (OR = 2.45; 95% CI: 1.19–4.84) and paratuberculosis (OR = 9.01; 95% CI: 4.17–20.08). Decreased odds were associated with contacts at grazing, buffalo (OR = 0.20; 95% CI: 0.03–0.97) and increased contact with other herds [1–5 herds: OR = 0.16 (95% CI: 0.04–0.55); 6+ herds: OR = 0.18 (95% CI: 0.05–0.64)]. Few studies have used the IFN-γ assay to describe bTB epidemiology in SSA. This study highlights the endemic situation of bTB in Cameroon and potential public health risks from dairy herds. Further work is needed to understand the IFN-γ assay performance, particularly in the presence of co-infections, and how this information can be used to develop control strategies in the SSA contexts

    Knowledge of Bovine Tuberculosis, Cattle Husbandry and Dairy Practices amongst Pastoralists and Small-Scale Dairy Farmers in Cameroon

    Get PDF
    BACKGROUND:Control of bovine tuberculosis (bTB) and zoonotic tuberculosis (zTB) has relied upon surveillance and slaughter of infected cattle, milk pasteurisation and public health education. In Cameroon, like many other sub-Saharan African countries, there is limited understanding of current cattle husbandry or milk processing practices or livestock keepers awareness of bTB. This paper describes husbandry and milk processing practices within different Cameroonian cattle keeping communities and bTB awareness in comparison to other infectious diseases. STUDY DESIGN:A population based cross-sectional sample of herdsmen and a questionnaire were used to gather data from pastoralists and dairy farmers in the North West Region and Vina Division of Cameroon. RESULTS:Pastoralists were predominately male Fulanis who had kept cattle for over a decade. Dairy farmers were non-Fulani and nearly half were female. Pastoralists went on transhumance with their cattle and came into contact with other herds and potential wildlife reservoirs of bTB. Dairy farmers housed their cattle and had little contact with other herds or wildlife. Pastoralists were aware of bTB and other infectious diseases such as foot-and-mouth disease and fasciolosis. These pastoralists were also able to identify clinical signs of these diseases. A similar proportion of dairy farmers were aware of bTB but fewer were aware of foot-and-mouth and fasciolosis. In general, dairy farmers were unable to identify any clinical signs for any of these diseases. Importantly most pastoralists and dairy farmers were unaware that bTB could be transmitted to people by consuming milk. CONCLUSIONS:Current cattle husbandry practices make the control of bTB in cattle challenging especially in mobile pastoralist herds. Routine test and slaughter control in dairy herds would be tractable but would have profound impact on dairy farmer livelihoods. Prevention of transmission in milk offers the best approach for human risk mitigation in Cameroon but requires strategies that improved risk awareness amongst producers and consumers

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Transmission patterns of rifampicin resistant Mycobacterium tuberculosis complex strains in Cameroon: a genomic epidemiological study

    No full text
    Background!#!Determining factors affecting the transmission of rifampicin (RR) and multidrug-resistant (MDR) Mycobacterium tuberculosis complex strains under standardized tuberculosis (TB) treatment is key to control TB and prevent the evolution of drug resistance.!##!Methods!#!We combined bacterial whole genome sequencing (WGS) and epidemiological investigations for 37% (n = 195) of all RR/MDR-TB patients in Cameroon (2012-2015) to identify factors associated with recent transmission.!##!Results!#!Patients infected with a strain resistant to high-dose isoniazid, and ethambutol had 7.4 (95% CI 2.6-21.4), and 2.4 (95% CI 1.2-4.8) times increased odds of being in a WGS-cluster, a surrogate for recent transmission. Furthermore, age between 30 and 50 was positively correlated with recent transmission (adjusted OR 3.8, 95% CI 1.3-11.4). We found high drug-resistance proportions against three drugs used in the short standardized MDR-TB regimen in Cameroon, i.e. high-dose isoniazid (77.4%), ethambutol (56.9%), and pyrazinamide (43.1%). Virtually all strains were susceptible to fluoroquinolones, kanamycin, and clofazimine, and treatment outcomes were mostly favourable (87.5%).!##!Conclusion!#!Pre-existing resistance to high-dose isoniazid, and ethambutol is associated with recent transmission of RR/MDR strains in our study. A possible contributing factor for this observation is the absence of universal drug susceptibility testing in Cameroon, likely resulting in prolonged exposure of new RR/MDR-TB patients to sub-optimal or failing first-line drug regimens
    corecore