38 research outputs found

    Radiometric study of beach sand deposits along the coast of Western Cape province, South Africa

    Get PDF
    Magister Scientiae - MScNatural radioactivity studies have been carried out to study the textural characteristics, heavy mineral composition, provenance, sediment transport, and depositional environment of beach placer deposits. The naturally occurring radionuclides such as 232Th, 238U and 40K are used as the tracers of the mineralogical properties of beach sands, which reflect the geological characteristics such as transport and sorting processes and the depositional environment. The present work focuses on the radiometric characteristics of beach sand deposits along the west coast of South Africa. Beach sands samples were collected at the Melkbosstrand (MBS) and Ouskip (OSK) beach. The activity concentrations of these radionuclides were determined by high-resolution gamma-ray spectrometry using a high-purity germanium (HPGe) detector in a low-background configuration

    LiDAR for Atmosphere Research over Africa (LARA)

    No full text
    International audienceThis paper describes the LIDAR for atmosphere research over Africa and current initiatives being undertaken in South Africa. A mobile LIDAR system is being developed at the Council for Scientific and Industrial Research (CSIR) National Laser Centre (NLC), Pretoria (25°5 ′ S;28°2 ′ E), South Africa, for remote sensing the atmosphere. The initial results conclude that the system is capable of providing aerosol/cloud backscatter measurements for the height region from ground to 40 km with a 10 m vertical height resolution

    Study on 2002 sudden stratospheric warming, mesopher-lower thermospheric wind structure and dynamics and middle atmospheric structure, based on superDARN HF RADAR, LIDAR, Riometer, satellites and models.

    No full text
    Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2012.In this thesis, the dynamics and coupling in the middle atmosphere over the Southern Hemisphere are investigated using SuperDARN high frequency (HF) radar wind data, satellites, light detection and ranging (LIDAR), the South African National Antarctic Expedition (SANAE) imaging riometer and models. In particular, the study focuses on the unprecedented 2002 major stratospheric warming and its role in coupling the middle atmosphere. The dynamics of the middle atmosphere is investigated in terms of mean wind, temperature, gravity waves and planetary wave activity. Studying the middle atmospheric thermal structure over Southern Africa is an important activity to improve the understanding of atmospheric dynamics of this region. Observation of a middle atmosphere thermal structure over Durban (29.9 S, 31.0 E, South Africa) using LIDAR data collected from April 1999 to July 2004 (277 nights), including closest overpasses of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and Halogen Occultation Experiments (HALOE) satellites, and the COSPAR International Reference Atmosphere (CIRA-86) are presented in this thesis. The observations from the LIDAR instrument, satellites and CIRA-86 exhibit the presence of annual oscillation in the stratosphere, whereas in the mesosphere the semi-annual oscillation seems to dominate the annual oscillation at some levels. The stratopause is observed in the height range of 40-55 km for all the instruments, with the stratopause temperatures being 260- 270 K for the LIDAR, 250-260 K for the SABER, and 250-270 K for the HALOE. Data from the LIDAR, satellites and CIRA-86 model indicate almost the same thermal structure of the middle atmosphere over Durban. This indicates a good agreement between LIDAR, satellites and the CIRA-86 model. Mean wind and planetary waves are investigated on a climatological scale in this study. Mean wind observations from the SANAE SuperDARN HF radar are compared with observations from Halley SuperDARN HF radar. There is a good agreement between the observations from the two stations both in the zonal and meridional wind components. Zonal wind is observed to be consistently larger than the meridional wind. The zonal wind is also consistently more eastward at both stations with maxima occurring during the solstice months. High latitude summer zonal mean ow at 94 km is observed to be weaker and more variable compared to the eastward winter mean circulation owing to tropospherically forced planetary waves propagating through the middle atmosphere. The zonal mean wind shows greater seasonal variability than does the meridional mean wind. This seasonal behaviour is reasonably well understood in terms of the upward propagating planetary waves and gravity waves interacting with the mean ow. The Coriolis force also plays an important role in the case of meridional wind component. The climatology of planetary waves both in the zonal and meridional wind components indicates an ampli cation of planetary waves of shorter wavenumbers (s = 3) in the winter months. During summer, long period oscillations (e.g. >10 days) which are dominant in winter disappear, and oscillations with shorter period (e.g. <10 days) become dominant. vi There is a strong planetary wave coupling between the stratosphere and mesosphere-lower thermospheric (MLT) during the year 2002 winter season, whilst the coupling is observed to be relatively weak during the other years. The strong planetary wave coupling in 2002 is understandable because during this year the middle atmosphere winter months were characterised by strong planetary wave activity which led to the rst ever detection of the SSW in the Southern Hemisphere. In the year 2002 winter period the mean circulation in the stratosphere is characterized by a series of planetary wave events that weakened the polar vortex and triggered the sudden stratospheric warming in late September. In particular, in the stratosphere there is a presence of a quasi 10-day eastward propagating planetary wave of wavenumber s=1, while in the MLT a quasi 14-day eastward propagating planetary wave of wavenumber s=1 is observed to be dominant. The Eliassen Palm ux (E-P) ux shows that strong planetary wave activity observed in the middle atmosphere originates from the troposphere. Zonal winds at the MLT show reversal approximately 7 days before the reversal at stratosphere, indicating a downwards propagation of circulation disturbance in the middle atmosphere. Eastward zonal winds dominate the winter MLT, but during the 2002 winter there are many periods of westward winds observed compared to the other years. The SABER vertical temperature pro les indicate cooling of the MLT region during the SSW occurrence. Gravity wave horizontal phase velocities and horizontal wavelengths as seen by the SANAE imaging riometer are observed to reduce dramatically over SANAE during the occurrence of the stratospheric warming. The disturbance of the middle atmosphere during the Southern Hemisphere stratospheric warming in year 2002 winter preconditioned the region for gravity waves to propagate upward to the MLT. The potential energy of these gravity waves is observed to increase with height up until they reach the lower thermosphere. At the MLT they lose their energy, thus depositing their momentum, leading to the MLT cooling and mean wind reversal. Keywords: SSW, Planetary waves, Gravity waves, Stratosphere, MLT, SuperDARN radar, Mean wind, Temperature, Middle atmosphere, SANAE

    First Observations of Cirrus Clouds Using the UZ Mie Lidar over uMhlathuze City, South Africa

    No full text
    Clouds cover more than two-thirds of the earth’s surface and play a dominant role in the energy and water cycle of our planet. Cirrus clouds are high-level clouds composed mostly of ice crystals and affect the earth’s radiation allocation mainly by absorbing outgoing longwave radiation and by reflecting solar radiation. This study presents the characterization of cirrus clouds observed on 10 and 11 April 2019 using the ground-based University of Zululand (UZ) light detection and ranging (lidar) for the first time. Dense cirrus clouds with an average thickness of ~1.5 km at a height range of 9.5–12 km on 10 and 11 April 2019 were observed by the UZ lidar. The UZ lidar observation on 10 April 2019 agreed with the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) observation

    Time Series Analysis and Forecasting Using a Novel Hybrid LSTM Data-Driven Model Based on Empirical Wavelet Transform Applied to Total Column of Ozone at Buenos Aires, Argentina (1966–2017)

    No full text
    International audienceTotal column of ozone (TCO) time series analysis and accurate forecasting is of great significance in monitoring the status of the Chapman Mechanism in the stratosphere, which prevents harmful UV radiation from reaching the Earth's surface. In this study, we performed a detailed time series analysis of the TCO data measured in Buenos Aires, Argentina. Moreover, hybrid data-driven forecasting models, based on long short-term memory networks (LSTM) recurrent neural networks (RNNs), are developed. We extracted the updated trend of the TCO time series by utilizing the singular spectrum analysis (SSA), empirical wavelet transform (EWT), empirical mode decomposition (EMD), and Mann-Kendall. In general, the TCO has been stable since the mid-1990s. The trend analysis shows that there is a recovery of ozone during the period from 2010 to 2017, apart from the decline of ozone observed during 2015, which is presumably associated with the Calbuco volcanic event. The EWT trend method seems to have effective power for trend identification, compared with others. In this study, we developed a robust data-driven hybrid time series-forecasting model (named EWT-LSTM) for the TCO time series forecasting. Our model has the advantage of utilizing the EWT technique in the decomposition stage of the LSTM process. We compared our model with (1) an LSTM model that uses EMD, namely EMD-LSTM; (2) an LSTM model that uses wavelet denoising (WD) (WD-LSTM); (3) a wavelet denoising EWT-LSTM (WD-EWT-LSTM); and (4) a wavelet denoising noise-reducing sequence called EMD-LSTM (WD-EMD-LSTM). The model that uses the EWT decomposition process (EWT-LSTM) outperformed the other five models developed here in terms of various forecasting performance evaluation criteria, such as the root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and correlation coefficient (R)

    Comparison of Long-Term Changes in Non-Linear Aggregated Drought Index Calibrated by MERRA–2 and NDII Soil Moisture Proxies

    No full text
    This study aimed at evaluating Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA–2) and Normalized Difference Infrared Index (NDII) soil moisture proxies in calibrating a comprehensive Non-linear Aggregated Drought Index (NADI). Soil moisture plays a critical role in temperature variability and controlling the partitioning of water into evaporative fluxes as well as ensuring effective plant growth. Long-term variability and change in climatic variables such as precipitation, temperatures, and the possible acceleration of the water cycle increase the uncertainty in soil moisture variability. Streamflow, temperature, rainfall, reservoir storage, MERRA–2, and NDII soil moisture proxies’ data from 1986 to 2016 were used to formulate the NADI. The trend analysis was performed using the Mann Kendall, SQ-MK was used to determine the point of trend direction change while Theil-Sen trend estimator method was used to determine the magnitude of the detected trend. The seasonal correlation between the NADI-NDII and NADI-MERRA–2 was higher in spring and autumn with an R2 of 0.9 and 0.86, respectively. A positive trend was observed over the 30 years period of study, NADI-NDII trend magnitude was found to be 0.02 units per year while that of NADI-MERRA–2 was 0.01 units. Wavelet analysis showed an in-phase relationship with negligible lagging between the NDII and MERRA–2 calibrated NADI. Although a robust comparison is recommended between soil moisture proxies and observed soil moisture, the soil moisture proxies in this study were found to be useful in monitoring long-term changes in soil moisture

    Time Series Analysis of MODIS-Derived NDVI for the Hluhluwe-Imfolozi Park, South Africa: Impact of Recent Intense Drought

    No full text
    The variability of temperature and precipitation influenced by El Ni&#241;o-Southern Oscillation (ENSO) is potentially one of key factors contributing to vegetation product in southern Africa. Thus, understanding large-scale ocean&#8315;atmospheric phenomena like the ENSO and Indian Ocean Dipole/Dipole Mode Index (DMI) is important. In this study, 16 years (2002&#8315;2017) of Moderate Resolution Imaging Spectroradiometer (MODIS) Terra/Aqua 16-day normalized difference vegetation index (NDVI), extracted and processed using JavaScript code editor in the Google Earth Engine (GEE) platform was used to analyze the vegetation response pattern of the oldest proclaimed nature reserve in Africa, the Hluhluwe-iMfolozi Park (HiP) to climatic variability. The MODIS enhanced vegetation index (EVI), burned area index (BAI), and normalized difference infrared index (NDII) were also analyzed. The study used the Modern Retrospective Analysis for the Research Application (MERRA) model monthly mean soil temperature and precipitations. The Global Land Data Assimilation System (GLDAS) evapotranspiration (ET) data were used to investigate the HiP vegetation water stress. The region in the southern part of the HiP which has land cover dominated by savanna experienced the most impact of the strong El Ni&#241;o. Both the HiP NDVI inter-annual Mann&#8315;Kendal trend test and sequential Mann&#8315;Kendall (SQ-MK) test indicated a significant downward trend during the El Ni&#241;o years of 2003 and 2014&#8315;2015. The SQ-MK significant trend turning point which was thought to be associated with the 2014&#8315;2015 El Ni&#241;o periods begun in November 2012. The wavelet coherence and coherence phase indicated a positive teleconnection/correlation between soil temperatures, precipitation, soil moisture (NDII), and ET. This was explained by a dominant in-phase relationship between the NDVI and climatic parameters especially at a period band of 8&#8315;16 months

    First Observations of Cirrus Clouds Using the UZ Mie Lidar over uMhlathuze City, South Africa

    No full text
    Clouds cover more than two-thirds of the earth&rsquo;s surface and play a dominant role in the energy and water cycle of our planet. Cirrus clouds are high-level clouds composed mostly of ice crystals and affect the earth&rsquo;s radiation allocation mainly by absorbing outgoing longwave radiation and by reflecting solar radiation. This study presents the characterization of cirrus clouds observed on 10 and 11 April 2019 using the ground-based University of Zululand (UZ) light detection and ranging (lidar) for the first time. Dense cirrus clouds with an average thickness of ~1.5 km at a height range of 9.5&ndash;12 km on 10 and 11 April 2019 were observed by the UZ lidar. The UZ lidar observation on 10 April 2019 agreed with the Cloud&ndash;Aerosol Lidar with Orthogonal Polarization (CALIOP) observation

    A Case Study of Energy Deposition and Absorption by Magnetic Cloud Electrons and Protons over the High Latitude Stations: Effects on the Mesosphere and Lower Thermosphere

    No full text
    Several possible characteristics of magnetic clouds (MCs) have been discussed in the literature, but none appears to explain all the effects from accumulated observations. MC characteristics range from low proton temperature and plasma beta, to high magnetic field magnitude, to smooth rotation in the direction of the magnetic field thus resulting in strong geomagnetic disturbances. Varied instrumentation which is located not only in SANAE IV, Antarctica, but also at Halley, a same radial distance (L ~ 4) in the southern hemisphere and in the vicinity of a conjugate location in northern hemisphere provide an opportunity to test theories applied to high latitude heating rates on the arrival of MC. The Halley riometer is used to monitor coincidences of absorption with the arrival of MC which was observed on 8 November 2004. Using the Monte Carlo Energy Transport Model (MCETM), the corresponding altitude of electron and proton energy distribution indicates the importance of MC triggered geomagnetic storms on mesosphere dynamics
    corecore