7 research outputs found

    Global sourcing of low-inorganic arsenic rice grain

    Get PDF
    Arsenic in rice grain is dominated by two species: the carcinogen inorganic arsenic (the sum of arsenate and arsenite) and dimethylarsinic acid (DMA). Rice is the dominant source of inorganic arsenic into the human diet. As such, there is a need to identify sources of low-inorganic arsenic rice globally. Here we surveyed polished (white) rice across representative regions of rice production globally for arsenic speciation. In total 1180 samples were analysed from 29 distinct sampling zones, across 6 continents. For inorganic arsenic the global x ~ x~ was 66 ÎŒg/kg, and for DMA this figure was 21 ÎŒg/kg. DMA was more variable, ranging from < 2 to 690 ÎŒg/kg, while inorganic arsenic ranged from < 2 to 399 ÎŒg/kg. It was found that inorganic arsenic dominated when grain sum of species was < 100 ÎŒg/kg, with DMA dominating at higher concentrations. There was considerable regional variance in grain arsenic speciation, particularly in DMA where temperate production regions had higher concentrations. Inorganic arsenic concentrations were relatively consistent across temperate, subtropical and northern hemisphere tropical regions. It was only in southern hemisphere tropical regions, in the eastern hemisphere that low-grain inorganic arsenic is found, namely East Africa (x ~ x~  < 10 ÎŒg/kg) and the Southern Indonesian islands (x ~ x~  < 20 ÎŒg/kg). Southern hemisphere South American rice was universally high in inorganic arsenic, the reason for which needs further exploration

    Rice grain cadmium concentrations in the global supply-chain

    Get PDF
    One of cadmium’s major exposure routes to humans is through rice consumption. The concentrations of cadmium in the global polished (white), market rice supply-chain were assessed in 2270 samples, purchased from retailers across 32 countries, encompassing 6 continents. It was found on a global basis that East Africa had the lowest cadmium with a median for both Malawi and Tanzania at 4.9 ÎŒg/kg, an order of magnitude lower than the highest country, China with a median at 69.3 ÎŒg/kg. The Americas were typically low in cadmium, but the Indian sub-continent was universally elevated. In particular certain regions of Bangladesh had high cadmium, that when combined with the high daily consumption rate of rice of that country, leads to high cadmium exposures. Concentrations of cadmium were compared to the European Standard for polished rice of 200 ÎŒg/kg and 5% of the global supply-chain exceeded this threshold. For the stricter standard of 40 ÎŒg/kg for processed infant foods, for which rice can comprise up to 100% by composition (such as rice porridges, puffed rice cereal and cakes), 25% of rice would not be suitable for making pure rice baby foods. Given that rice is also elevated in inorganic arsenic, the only region of the world where both inorganic arsenic and cadmium were low in grain was East Africa

    Strategies and Mechanisms of Building up and Stabilizing Organic Matter Stocks in Soils

    No full text
    Soil organic matter (SOM) has very important functions in the soil. It affects the soil physical, chemical and biological properties, and eventually affecting the overall soil and crop productivity. Increase in SOM matter is associated with an increase in soil and crop productivity. It also contributes to climate change mitigation through soil carbon sequestration. This paper discusses various soil management and/or farming strategies that contribute to the building up of SOM. The paper also highlights mechanisms that stabilize organic matter in the soil and protect it from rapid decomposition and its loss from the soil. Through reviewing of various research papers, literature shows that a number of strategies provide substantial contributions to building up of SOM. These include: conservation agriculture, crop rotations, cover cropping, agroforestry and afforestration, improved fallows, well managed pastures and organic farming. Various physical, chemical and biochemical mechanisms contribute to stabilization of organic matter and protect the accumulated SOM from rapid decomposition. Quantity and quality of organic materials, soil matrix and clay minerals, organo-mineral interactions and soil management practices are all important factors in SOM stabilization. From this review it can be pointed out that research based knowledge of both SOM accumulation strategies and SOM stabilizing mechanisms is very beneficial in making recommendations and implementation of soil management practices that can increase and build up organic matter in the soil
    corecore