1,026 research outputs found

    A novel oligoribonuclease of Escherichia coli. I. Isolation and properties

    Get PDF
    A new ribonuclease has been isolated from Escherichia coli. The enzyme is present in the 100,000 times g supernatant fraction and has been purified over 200-fold. Studies of the enzyme reveal that: 1. The enzyme shows a marked preference for oligoribonucleotides; indeed, the reaction rate is inversely proportional to the chain length of the substrate. The enzyme does not attack polynucleotides even at high concentrations of enzyme and has no detectable DNase activity. 2. The enzyme is stimulated strongly by Mn2+, less strongly by Mg2+, and not at all by Ca2+ and monovalent cations. 3. The enzyme is purified free of RNase I, RNase II, RNase III, polynucleotide phosphorylase, and other known ribonucleases of E. coli. The enzyme displays identical properties when isolated from mutants of E. coli that are deficient in the above ribonucleases. 4. The enzyme has a marked thermostability, a point of further distinction from RNase II

    Development of an Advanced Engineering Polymer from the Modification of Nylon 66 by e-Beam Irradiation

    Get PDF
    When Nylon 66 was irradiated by an optimum dose of e-beam in presence of polyurethane as impact modifierin combination with triallyl isocyanurate as cross-linker, a superior performance was observed for the irradiatednylon 66. Significant improvement of properties, such as hardness, tensile strength, flexural modulus and impactstrength was obtained on radiation processing of nylon 66 by e-beam. More interestingly, percent water absorptionof such irradiated nylon 66 was reduced substantially. Improvement of mechanical properties and reduction of waterabsorption of irradiated nylon 66 were due to the cross-linking of the polymer system. Increase of cross-linkingwith dose of e-beam was verified by the increased gel content at higher doses. Irradiated nylon 66 showed betterdimensional stability than those achieved with pristine nylon 66. The increase in dimensional stability may beattributed to reduction in crystallinity with increasing dose of e-beam as revealed by DSC studies.Defence Science Journal, Vol. 64, No. 3, May 2014, pp. 281-289, DOI:http://dx.doi.org/10.14429/dsj.64.732

    Roles of atmospheric and land surface data in dynamic regional downscaling

    Get PDF
    In studies dealing with the impact of land use changes on atmospheric processes, a key methodological step is the validation of simulated current conditions. However, regions lacking detailed atmospheric and land use data provide limited information with which to accurately generate control simulations. In this situation, the difference between baseline control simulations and different land use change simulations can be quite different owing to the quality of the atmospheric and land use data sets. Using multiple simulations at the Monteverde cloud forest region of Costa Rica as an example, we show that when a regional climate model is used to study the effect of land use change, it can produce distinctly different results at regional scales, depending on the amount of data available to run the climate simulations. We show that for the specific case of land use change impact studies, the simulation results are very sensitive to the prescribed atmospheric information (e.g., lateral boundary conditions) compared to the land use (surface boundary) information

    Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis

    Get PDF
    To investigate the impact of iron deficiency on bioenergetic pathways in Chlamydomonas, we compared growth rates, iron content, and photosynthetic parameters systematically in acetate versus CO2-grown cells. Acetate-grown cells have, predictably (2-fold) greater abundance of respiration components but also, counter-intuitively, more chlorophyll on a per cell basis. We found that phototrophic cells are less impacted by iron deficiency and this correlates with their higher iron content on a per cell basis, suggesting a greater capacity/ability for iron assimilation in this metabolic state. Phototrophic cells maintain both photosynthetic and respiratory function and their associated Fe-containing proteins in conditions where heterotrophic cells lose photosynthetic capacity and have reduced oxygen evolution activity. Maintenance of NPQ capacity might contribute to protection of the photosynthetic apparatus in iron-limited phototrophic cells. Acetate-grown iron-limited cells maintain high growth rates by suppressing photosynthesis but increasing instead respiration. These cells are also able to maintain a reduced plastoquinone pool

    Rayleigh Imaging of Graphene and Graphene Layers

    Get PDF
    We investigate graphene and graphene layers on different substrates by monochromatic and white-light confocal Rayleigh scattering microscopy. The image contrast depends sensitively on the dielectric properties of the sample as well as the substrate geometry and can be described quantitatively using the complex refractive index of bulk graphite. For few layers (<6) the monochromatic contrast increases linearly with thickness: the samples behave as a superposition of single sheets which act as independent two dimensional electron gases. Thus, Rayleigh imaging is a general, simple and quick tool to identify graphene layers, that is readily combined with Raman scattering, which provides structural identification.Comment: 8 pages, 9 figure

    Why some stems are red: cauline anthocyanins shield photosystem II against high light stress

    Get PDF
    Red-stemmed plants are extremely common, yet the functions of cauline anthocyanins are largely unknown. The possibility that photoabatement by anthocyanins in the periderm reduces the propensity for photoinhibition in cortical chlorenchyma was tested for Cornus stolonifera. Anthocyanins were induced in green stems exposed to full sunlight. PSII quantum yields (ФPSII) and photochemical quenching coefficients were depressed less in red than in green stems, both under a light ramp and after prolonged exposures to saturating white light. These differences were primarily attributable to the attenuation of PAR, especially green/yellow light, by anthocyanins. However, the red internodes also had less chlorophyll and higher carotenoid:chlorophyll ratios than the green, and when the anthocyanic periderm was removed, small differences in the ФPSII of the underlying chlorenchyma were retained. Thus, light screening by cauline anthocyanins is important, but is only part of a set of protective acclimations to high irradiance. Hourly measurements of ФPSII on established trees under natural daylight indicated a possible advantage of red versus green stems under sub-saturating diffuse, but not direct sunlight. To judge the wider applicability of the hypothesis, responses to high light were compared for red and green stems across five further unrelated species. There was a strong, linear, interspecific correlation between photoprotective advantage and anthocyanin concentration differences among red and green internodes. The photoprotective effect appears to be a widespread phenomenon

    The Unique Origin of Colors of Armchair Carbon Nanotubes

    Full text link
    The colors of suspended metallic colloidal particles are determined by their size-dependent plasma resonance, while those of semiconducting colloidal particles are determined by their size-dependent band gap. Here, we present a novel case for armchair carbon nanotubes, suspended in aqueous medium, for which the color depends on their size-dependent excitonic resonance, even though the individual particles are metallic. We observe distinct colors of a series of armchair-enriched nanotube suspensions, highlighting the unique coloration mechanism of these one-dimensional metals.Comment: 4 pages, 3 figure

    Il linguaggio sopra la base magica. Realt\ue0 e scrittura in Nanni Balestrini

    Get PDF
    Personaggi, fatti ed esperienze collegati con precise realt\ue0 storiche e sociali occupano il piano del contenuto di molte opere in prosa e in versi di Nanni Balestrini. Tuttavia questa semplice constatazione non deve mettere in ombra la complessit\ue0 del rapporto fra realt\ue0 e scrittura nella sua opera, tenacemente irriducibile ad uno schema contenutistico. Non inganni, in casi come il radiodramma Parma 1922, l\u2019apparente trasparenza della prosa: con Balestrini ci si tiene sempre lontano dall\u2019esercizio della scrittura come mimesi realistica. Balestrini \ue8 uno scrittore che, al limite, pu\uf2 non scrivere affatto ma piuttosto riscrivere e - con particolari procedimenti - porre sulla \u201cbase magica\u201d della sua letteratura un dato: il prodotto linguistico di una determinata realt\ue0, che nel caso di Parma 1922 consiste nei discorsi dei protagonisti delle Barricate e di chi li raccont\uf2 negli anni Sessanta (lo storico De Micheli). Come lo spirito epico che anima queste pagine, anche quanto vi si trova di realistico appartiene a quei linguaggi e, in ultima istanza, appartiene a quelle storie. A Balestrini spetta la straordinaria capacit\ue0 di farne letteratura
    corecore