72 research outputs found

    Salt Compartmentation and Antioxidant Defense in Roots and Leaves of Two Non-Salt Secretor Mangroves under Salt Stress

    Get PDF
    The effects of increasing NaCl (100–400 mM) on cellular salt distribution, antioxidant enzymes, and the relevance to reactive oxygen species (ROS) homeostasis were investigated in 1-year-old seedlings of two non-salt secretor mangroves, Kandelia obovata and Bruguiera gymnorhiza. K. obovata accumulated less Na+ and Cl− in root cells and leaf compartments under 400 mM NaCl compared to B. gymnorhiza. However, B. gymnorhiza leaves are notable for preferential accumulation of salt ions in epidermal vacuoles relative to mesophyll vacuoles. Both mangroves upregulated antioxidant enzymes in ASC-GSH cycle to scavenge the salt-elicited ROS in roots and leaves but with different patterns. K. obovata rapidly initiated antioxidant defense to reduce ROS at an early stage of salt stress, whereas B. gymnorhiza maintained a high capacity to detoxify ROS at high saline. Collectively, our results suggest that salinized plants of the two mangroves maintained ROS homeostasis through (i) ROS scavenging by antioxidant enzymes and (ii) limiting ROS production by protective salt compartmentation. In the latter case, an efficient salt exclusion is favorable for K. obovata to reduce the formation of ROS in roots and leaves, while the effective vacuolar salt compartmentation benefited B. gymnorhiza leaves to avoid excessive ROS production in a longer term of increasing salinity

    Random forest can accurately predict the technique failure of peritoneal dialysis associated peritonitis patients

    Get PDF
    InstructionsPeritoneal dialysis associated peritonitis (PDAP) is a major cause of technique failure in peritoneal dialysis (PD) patients. The purpose of this study is to construct risk prediction models by multiple machine learning (ML) algorithms and select the best one to predict technique failure in PDAP patients accurately.MethodsThis retrospective cohort study included maintenance PD patients in our center from January 1, 2010 to December 31, 2021. The risk prediction models for technique failure were constructed based on five ML algorithms: random forest (RF), the least absolute shrinkage and selection operator (LASSO), decision tree, k nearest neighbor (KNN), and logistic regression (LR). The internal validation was conducted in the test cohort.ResultsFive hundred and eight episodes of peritonitis were included in this study. The technique failure accounted for 26.38%, and the mortality rate was 4.53%. There were resignificant statistical differences between technique failure group and technique survival group in multiple baseline characteristics. The RF prediction model is the best able to predict the technique failure in PDAP patients, with the accuracy of 93.70% and area under curve (AUC) of 0.916. The sensitivity and specificity of this model was 96.67 and 86.49%, respectively.ConclusionRF prediction model could accurately predict the technique failure of PDAP patients, which demonstrated excellent predictive performance and may assist in clinical decision making

    Gas storage

    Get PDF
    International audienceThe continuous increase of energy demands based on fossil fuels in the last years have lead to an increase of greenhouse gases (GHG) emission which strongly contribute to global warming. The main strategies to limit this phenomenon are related to the efficient capture of these gases and to the development of renewable energies sources with limited environmental impact. Particularly, carbon dioxide (CO2) and methane (CH4) are the main constituents of greenhouse gases while hydrogen (H2) is considered an alternative clean energy source to fossil fuels. Therefore, tremendous research to store these gases has been reported by several approaches and among them the physisorption on activated carbons (AC) have received significant attention. Their abundance, low cost and tunable porous structure and chemical functionalities with an existing wide range of precursors that includes bio-wastes make them ideal candidates for gas applications. This chapter presents the recent developments on CH4, CO2 and H2 storage by activated carbons with focus on biomass as precursor materials. An analysis of the main carbon properties affecting the AC's adsorption capacity (i.e. specific surface area, pore size and surface chemistry) is discussed in detail herein

    The complete chloroplast genome and phylogenetic analysis of Corydalis fangshanensis W.T. Wang ex S.Y. He (Papaveraceae)

    No full text
    The complete chloroplast (cp) genome of Corydalis fangshanensis W.T. Wang ex S.Y. He, a Chinese endemic plant with limestone-specific distribution was first reported. The cp genome was circular in structure and 192,554 bp in length, consisting of a large single copy region (LSC, 98,393 bp), two inverted repeat regions (IRs, 42,263 bp), and a small single copy region (SSC, 9,635 bp). The overall GC content of the genome was 40.26%. It encoded 112 unique genes, including 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis resolved C. fangshanensis was closely related to C. saxicola G.S. Bunting within Corydalis sect. Thalictrifoliae (Fedde) Lidén, in line with morphological character-based taxonomy. Our result provides informative data for studying the taxonomy, phylogeny and ecology of Corydalis, especially species with specific-limestone distribution and also for studying the adaptive evolution in plants

    Microscopic Examination of Polymeric Monoguanidine, Hydrochloride-Induced Cell Membrane Damage in Multidrug-Resistant Pseudomonas aeruginosa

    No full text
    Advances in antimicrobial activities of molecule-containing, multiple guanidinium groups against antibiotics-resistant bacteria should be noted. The synthesized polyoctamethylene monoguanidine hydrochloride (POGH), carrying cationic amphiphilic moieties, display excellent activity against multidrug-resistant Pseudomonas aeruginosa (MDR-PA) and other antibiotics-resistant bacteria. The membrane damage effects of POGH on MDR-PA were clarified using beta-lactamase activity assay, confocal fluorescence microscopy, scanning electron microscopy, and transmission electron microscopy. The results showed that POGH disrupted both the outer and inner membranes and the intracellular structure of MDR-PA to different extents depending on the dose. All concentrations of POGH within 3–23 μg/mL increased the outer membrane permeability, which facilitated the release of beta-lactamase across the inner membrane. A median dose (10 μg/mL) of POGH led to the separation of the inner and outer membrane, an increase in the membrane gap, and outer membrane structure damage with still maintained overall cytoskeletal structures. The application of a 30 μg/mL dose of POGH led to the collapse of the outer membrane, cellular wrinkling, and shrinkage, and the formation of local membrane holes. The disruption of the outer and inner membranes and the formation of the local membrane holes by a relative high dose were probably the main bactericidal mechanism of POGH. The microscopic evidence explained the strong outer-membrane permeation ability of guanidine-based antimicrobial polymers, which could be considered for the molecular design of novel guanidine-based polymers, as well as the damaged membrane structure and intracellular structure of MDR-PA

    Interactions of Biocidal Polyhexamethylene Guanidine Hydrochloride and Its Analogs with POPC Model Membranes

    No full text
    The bacterial membrane-targeted polyhexamethylene guanidine hydrochloride (PHGH) and its novel analog polyoctamethylene guanidine hydrochloride (POGH) had excellent antimicrobial activities against antibiotics-resistant bacteria. However, the biocompatibility aspects of PHGH and POGH on the phospholipid membrane of the eukaryotic cell have not yet been considered. Four chemically synthesized cationic oligoguanidine polymers containing alkyl group with different carbon chain lengths, including PHGH, POGH, and their two analogs, were used to determine their interactions with zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipids vesicles mimicking the eukaryotic cell membrane. Characterization was conducted by using bactericidal dynamics, hemolysis testing, calcein dye leakage, and isothermal titration calorimetry. Results showed that the gradually lengthened alkyl carbon chain of four oligoguanidine polymers increased the biocidal activity of the polymer, accompanied with the increased hemolytic activity, calcein dye leakage rate and the increased absolute value of the exothermic effect of polymer-POPC membrane interaction. The thermodynamic curve of the polymer-POPC membrane interaction exhibited a very weak exothermic effect and a poorly unsaturated titration curve, which indicated that four guanidine polymers had weak affinity for zwitterionic POPC vesicles. Generally, PHGH of four guanidine polymers had high biocidal activity and relatively high biocompatibility. This study emphasized that appropriate amphiphilicity balanced by the alkyl chain length, and the positive charge is important factor for the biocompatibility of cationic antimicrobial guanidine polymer. Both PHGH and POGH exhibited destructive power to phospholipid membrane of eukaryotic cell, which should be considered in their industry applications

    Association of Folic Acid Supplementation in Early Pregnancy with Risk of Gestational Diabetes Mellitus: A Longitudinal Study

    No full text
    Background: Gestational diabetes mellitus (GDM) may lead to many adverse effects on women and their offspring. Method: 24,429 pregnant women were enrolled during early pregnancy from January 2018 to December 2021. The self-reported intake of folic acid supplements was assessed via a questionnaire. Oral glucose tolerance tests were used for the diagnosis of GDM. The association between intake or not, dose, and duration of folic acid and GDM risk was assessed. Results: 6396 (26.18%) women were diagnosed with GDM. In the univariate models, folic acid was found to be correlated with total GDM risk (OR = 0.82, 95% CI: 0.70~0.95, p = 0.009). After adjusting for potential confounders, the association with total GDM risk was not significant, but the association of folic acid with 2-h PBG diagnosed GDM risk was consistently significant (OR = 0.75, 95% CI: 0.63~0.90, p = 0.002). No significant association between the dose and duration of folic acid supplementation and GDM risk was observed in the analyses. Conclusion: Folic acid supplementation might be a protective factor for the risk of GDM caused by the high level of postprandial blood glucose, but the dose or duration-related association between folic acid supplementation and GDM risk is not clear
    • …
    corecore