1,493 research outputs found

    Memory effects on descent from nuclear fission barrier

    Get PDF
    Non-Markovian transport equations for nuclear large amplitude motion are derived from the collisional kinetic equation. The memory effects are caused by the Fermi surface distortions and depend on the relaxation time. It is shown that the nuclear collective motion and the nuclear fission are influenced strongly by the memory effects at the relaxation time τ51023s\tau \geq 5\cdot 10^{-23}{\rm s}. In particular, the descent of the nucleus from the fission barrier is accompanied by characteristic shape oscillations. The eigenfrequency and the damping of the shape oscillations depend on the contribution of the memory integral in the equations of motion. The shape oscillations disappear at the short relaxation time regime at τ0\tau \to 0, which corresponds to the usual Markovian motion in the presence of friction forces. We show that the elastic forces produced by the memory integral lead to a significant delay for the descent of the nucleus from the barrier. Numerical calculations for the nucleus 236^{236}U shows that due to the memory effect the saddle-to-scission time grows by a factor of about 3 with respect to the corresponding saddle-to-scission time obtained in liquid drop model calculations with friction forces.Comment: 22 pages, 8 figures, submitted to Phys. Rev.

    Statistical fluctuations for the fission process on its decent from saddle to scission

    Get PDF
    We reconsider the importance of statistical fluctuations for fission dynamics beyond the saddle in the light of recent evaluations of transport coefficients for average motion. The size of these fluctuations are estimated by means of the Kramers-Ingold solution for the inverted oscillator, which allows for an inclusion of quantum effects.Comment: 12 pages, Latex, 5 Postscript figures; submitted to PRC e-mail: [email protected] www home page: http://www.physik.tu-muenchen.de/tumphy/e/T36/hofmann.htm

    Fission studies with 140 MeV α\bm{\alpha}-Particles

    Full text link
    Binary fission induced by 140 MeV α\alpha-particles has been measured for nat^{\rm nat}Ag, 139^{139}La, 165^{165}Ho and 197^{197}Au targets. The measured quantities are the total kinetic energies, fragment masses, and fission cross sections. The results are compared with other data and systematics. A minimum of the fission probability in the vicinity Z2/A=24Z^2/A=24 is observed.Comment: 4 figures, 2 table

    An evaporation-based model of thermal neutron induced ternary fission of plutonium

    Get PDF
    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~1.2 MeV and ~10^-22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission.Comment: 25 pages, 12 figures, accepted for publication in IJMP

    Final Report: Buffalo National River Ecosystems

    Get PDF
    The objective of this study was to sample the Buffalo River on a seasonal basis for a year, in order to determine whether any potential water quality problems existed

    Understanding your water test report (1995)

    Get PDF
    "New 7/93, Reprinted 4/95/5M.""Water Quality.""Focus area : drinking water.""Published by University Extension. University of Missouri-Columbia.""Reviewed and adapted for Missouri by Wanda Eubank, Jerry Carpenter, Bev Maltsberger, University of Missouri-Columbia, and Nix Anderson, Missouri Department of Health, from Understanding Your Water Test Report by Michael H. Bradshaw, Health and Safety Extension Specialist and G. Morgan Powell, Natural Resource Engineer, Kansas State University.

    Self-similar solution of a nonsteady problem of nonisothermal vapour condensation on a droplet growing in diffusion regime

    Full text link
    This paper presents a mathematically exact self-similar solution to the joint nonsteady problems of vapour diffusion towards a droplet growing in a vapour-gas medium and of removal of heat released by a droplet into a vapour-gas medium during vapour condensation. An equation for the temperature of the droplet is obtained; and it is only at that temperature that the self-similar solution exists. This equation requires the constancy of the droplet temperature and even defines it unambiguously throughout the whole period of the droplet growth. In the case of strong display of heat effects, when the droplet growth rate decreases significantly, the equation for the temperature of the droplet is solved analytically. It is shown that the obtained temperature fully coincides with the one that settles in the droplet simultaneously with the settlement of its diffusion regime of growth. At the obtained temperature of the droplet the interrelated nonsteady vapour concentration and temperature profiles of the vapour-gas medium around the droplet are expressed in terms of initial (prior to the nucleation of the droplet) parameters of the vapour-gas medium. The same parameters are used to formulate the law in accordance with which the droplet is growing in diffusion regime, and also to define the time that passes after the nucleation of the droplet till the settlement of diffusion regime of droplet growth, when the squared radius of the droplet becomes proportionate to time. For the sake of completeness the case of weak display of heat effects is been studied.Comment: 12 pages, 4 figure

    Genetic algorithm dynamics on a rugged landscape

    Full text link
    The genetic algorithm is an optimization procedure motivated by biological evolution and is successfully applied to optimization problems in different areas. A statistical mechanics model for its dynamics is proposed based on the parent-child fitness correlation of the genetic operators, making it applicable to general fitness landscapes. It is compared to a recent model based on a maximum entropy ansatz. Finally it is applied to modeling the dynamics of a genetic algorithm on the rugged fitness landscape of the NK model.Comment: 10 pages RevTeX, 4 figures PostScrip
    corecore