5,104 research outputs found
The Fruit Fly Drosophila melanogaster as a Model System to Study Cholesterol Metabolism and Homeostasis
Cholesterol has long been recognized for its versatile roles in influencing the biophysical properties of cell membranes and for serving as a precursor of steroid hormones. While many aspects of cholesterol biosynthesis are well understood, little is currently known about the molecular mechanisms of cholesterol metabolism and homeostasis. Recently, genetic approaches in the fruit fly, Drosophila melanogaster, have been successfully used for the analysis of molecular mechanisms that regulate cholesterol metabolism and homeostasis. This paper summarizes the recent studies on genes that regulate cholesterol metabolism and homeostasis, including neverland, Niemann Pick type C(NPC) disease genes, and DHR96
Ouija board: A transcription factor evolved for only one target in steroid hormone biosynthesis in the fruit flyDrosophila melanogaster
Transcription factors generally regulate gene expression of multiple targets. In contrast, our recent finding suggests that the zinc finger protein Ouija board controls steroid hormone biosynthesis through specific regulation of only one gene spookier in Drosophila. It sheds light on a specialized but essential factor that evolved for one target
Effects of ion-exchange treatment on bromate formation and oxidation efficiency during ozonation
Ion-exchange treatment is a promising technique for removing hydrophilic compounds during drinking water treatment. In this study, we applied several different ion exchangers (i.e., anion exchange resins and a hydrotalcite compound) to bromide removal to minimize bromate formation during ozonation. It was found that ion-exchange treatment affected ozone and hydroxyl radical concentration profiles as well as bromate ion concentration after ozonation. Selecting an appropriate ion exchanger is important to achieve both the oxidation of target contaminants and the reduction of bromate ion during ozonation
Transcriptional regulation of insect steroid hormone biosynthesis and its role in controlling timing of molting and metamorphosis
The developmental transition from juvenile to adult is often accompanied by many systemic changes in morphology, metabolism, and reproduction. Curiously, both mammalian puberty and insect metamorphosis are triggered by a pulse of steroid hormones, which can harmonize gene expression profiles in the body and thus orchestrate drastic biological changes. However, understanding of how the timing of steroid hormone biosynthesis is regulated at the molecular level is poor. The principal insect steroid hormone, ecdysteroid, is biosynthesized from dietary cholesterol in the specialized endocrine organ called the prothoracic gland. The periodic pulses of ecdysteroid titers determine the timing of molting and metamorphosis. To date, at least nine families of ecdysteroidogenic enzyme genes have been identified. Expression levels of these genes correlate well with ecdysteroid titers, indicating that the transcriptional regulatory network plays a critical role in regulating the ecdysteroid biosynthesis pathway. In this article, we summarize the transcriptional regulation of ecdysteroid biosynthesis. We first describe the development of prothoracic gland cells during Drosophila embryogenesis, and then provide an overview of the transcription factors that act in ecdysteroid biosynthesis and signaling. We also discuss the external signaling pathways that target these transcriptional regulators. Furthermore, we describe conserved and/or diverse aspects of steroid hormone biosynthesis in insect species as well as vertebrates
Application of thermoluminescence for detection of cascade shower 2: Detection of cosmic ray cascade shower at Mount Fuji
The results of a thermoluminescence (TL) chamber exposed at Mt. Fuji during Aug. '83 - Aug. '84 are reported. The TL signal induced by cosmic ray shower is detected and compared with the spot darkness of X-ray film exposed at the same time
Application of thermoluminescence for detection of cascade shower 1: Hardware and software of reader system
A reader system for the detection of cascade showers via luminescence induced by heating sensitive material (BaSO4:Eu) is developed. The reader system is composed of following six instruments: (1) heater, (2) light guide, (3) image intensifier, (4) CCD camera, (5) image processor, (6) microcomputer. The efficiency of these apparatuses and software application for image analysis is reported
Near-infrared spectroscopy and plasma homovanillic acid levels in bipolar disorder: a case report
Misdiagnosis of bipolar disorder is a serious, but not unusual problem for patients. Nevertheless, there are few biomarkers for distinguishing unipolar and bipolar disorder. Near-infrared spectroscopy (NIRS) is a noninvasive and useful method for the measurement of hemoglobin concentration changes in the cortical surface area, which enables the assessment of brain function. We measured NIRS and plasma monoamine metabolite levels in a patient with bipolar disorder. A 22-year-old man was admitted due to major depression. At admission, NIRS findings showed oxygenated hemoglobin reincrease in the posttask period, which is characteristic of schizophrenia. After treatment with paroxetine, he became manic with psychotic symptoms. His plasma level of homovanillic acid just before the manic switch was ten times higher than that just after paroxetine initiation. Treatment with lithium and antipsychotics was successful, and plasma homovanillic acid decreased after treatment. In this case, the NIRS findings may predict a possible risk of a manic switch, which is likely induced by paroxetine. NIRS may be able to help distinguish unipolar and bipolar disorder in clinical settings
- …