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Review Article

Transcriptional regulation of insect steroid hormone
biosynthesis and its role in controlling timing of molting
and metamorphosis
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1Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba; 2Faculty of Life and Environmental
Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan; and 3PRESTO, Japan Science
and Technology Agency, Honcho 4-1-8, Kawaguchi 332-0012, Saitama, Japan

The developmental transition from juvenile to adult is often accompanied by many systemic changes in mor-
phology, metabolism, and reproduction. Curiously, both mammalian puberty and insect metamorphosis are trig-
gered by a pulse of steroid hormones, which can harmonize gene expression profiles in the body and thus
orchestrate drastic biological changes. However, understanding of how the timing of steroid hormone biosyn-
thesis is regulated at the molecular level is poor. The principal insect steroid hormone, ecdysteroid, is biosynthe-
sized from dietary cholesterol in the specialized endocrine organ called the prothoracic gland. The periodic
pulses of ecdysteroid titers determine the timing of molting and metamorphosis. To date, at least nine families
of ecdysteroidogenic enzyme genes have been identified. Expression levels of these genes correlate well with
ecdysteroid titers, indicating that the transcriptional regulatory network plays a critical role in regulating the
ecdysteroid biosynthesis pathway. In this article, we summarize the transcriptional regulation of ecdysteroid
biosynthesis. We first describe the development of prothoracic gland cells during Drosophila embryogenesis,
and then provide an overview of the transcription factors that act in ecdysteroid biosynthesis and signaling. We
also discuss the external signaling pathways that target these transcriptional regulators. Furthermore, we
describe conserved and/or diverse aspects of steroid hormone biosynthesis in insect species as well as verte-
brates.
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Introduction

Temporal coordination of organismal development,

simply called developmental timing, is one of the fun-

damental aspects in developmental biology (Ambros

2000; Thummel 2001; Banerjee & Slack 2002; Roug-

vie 2005). In various multicellular organisms, appropri-

ate regulation of developmental timing allows

organisms to be sexually mature adults from the juve-

nile stage. For example, in mammals including
humans, puberty is one of the major temporal

changes during development, which initiates a series

of drastic morphological and physiological changes

that make organisms reproductive. Such a drastic

developmental transition to transform sexually imma-

ture individuals to fecund adults, known as metamor-

phosis, is also found in evolutionarily distant animals

such as insects.
Both mammalian puberty and insect metamorphosis

are triggered by steroid hormones, which are small fat-

soluble bioactive molecules that can pass through the

cell membrane into the cytoplasm (Miller & Auchus

2011; Yamanaka et al. 2013a; Niwa & Niwa 2014b).

Steroid hormones can systemically harmonize changes

of gene expression in the body and thus orchestrate

the drastic biological changes. One of the crucial keys
to determine the timing of both puberty and metamor-

phosis is temporal regulation of steroid hormone

biosynthesis in vivo, which generates temporally specific
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peaks of hemolymph steroid hormone titers to trigger
developmental transitions (Hariharan 2012). Therefore,

understanding the mechanisms that modulate the tim-

ing of biosynthesis is important to comprehend devel-

opmental timing at the molecular level.

An initial step towards the elucidation of steroid

hormone biosynthesis is identification and characteri-

zation of steroidogenic enzymes responsible for con-

verting precursor sterols to active steroid hormones.
Studies on mammalian steroidogenic enzymes have

been conducted since the 1980s, and a number of

essential steroidogenic enzymes have been identified

(Miller 1988; Hanukoglu 1992). By contrast, insect

steroidogenic enzymes have been reported only since

2000. The previous 15 years, however, have been a

fruitful period in terms of the elucidation of a number

of insect steroidogenic enzymes (Niwa & Niwa
2014a). The principal insect steroid hormones are

ecdysteroids, including ecdysone and its active

derivative 20-hydroxyecdysone (20E) that trigger

metamorphosis as well as molting. Molecular genetics

and biochemical studies using the fruit fly Drosophila

melanogaster and the silkworm Bombyx mori have

revealed that for ecdysteroid biosynthesis in the ecdy-

sone-producing organ, called the prothoracic gland
(PG, Fig. 1), at least nine families of enzymes are

required: noppera-bo (nobo) (Enya et al. 2014, 2015),

neverland (nvd) (Yoshiyama et al. 2006; Yoshiyama-
Yanagawa et al. 2011), non-molting glossy/shroud

(sro) (Niwa et al. 2010), Cyp307a1/spook (spo) (Niwa

et al. 2005; Ono et al. 2006), Cyp307a2/spookier

(spok) (Ono et al. 2006), Cyp6t3 (Ou et al. 2011),

Cyp306a1/phantom (phm) (Niwa et al. 2004; Warren

et al. 2004), Cyp302a1/disembodied (dib) (Ch�avez

et al. 2000; Warren et al. 2002), and Cyp315a1/sha-

dow (sad) (Warren et al. 2002). After release from the
PG to the hemolymph, ecdysone is converted to 20E

by another enzyme Cyp314a1/shade (shd) in the

peripheral tissues (Petryk et al. 2003). All of these

enzymes (except nvd, spok, and Cyp6t3) are collec-

tively referred to as the Halloween genes (Rewitz

et al. 2007; Niwa & Niwa 2014a).

After the discovery of the ecdysteroidogenic

enzymes, researchers promptly realized that the
expression levels of these biosynthesis genes in the

PG correlate very well with the levels of hemolymph

ecdysteroid titers (Warren et al. 2002, 2006; Niwa

et al. 2005; Parvy et al. 2005). This is reminiscent of

mammalian steroidogenic gene expression, which well

reflects steroid hormone production (Mizutani et al.

2015). Therefore, it turns out that the timing of steroid

hormone biosynthesis depends on transcriptional regu-
lation of the steroidogenic enzyme genes. Indeed,

transcriptional regulation of mammalian steroidogenic

Fig. 1. Overview of the ecdysteroid

biosynthesis pathway and the regulatory

mechanisms through transcriptional net-

work in the prothoracic gland (PG) of Dro-

sophila melanogaster. Several distinct

signaling pathways regulate ecdysteroid

biosynthesis and some pathways poten-

tially target transcription factors (TFs) to

regulate ecdysteroidogenic enzyme gene

expressions. The ecdysteroid biosynthesis

pathway is colored in blue. It starts with

dietary cholesterol. Ecdysteroid biosynthe-

sis enzymes are highlighted in green.

Hexagons represent ecdysteroidogenic

TFs that are listed in Table 1. Among

them, nuclear receptors are colored in sky

blue. In each signaling pathway, only the

key components are depicted. Yellow “P”

means phosphorylation. DILPS, Droso-

phila insulin-like peptides; ERK, Extracellu-

lar signal-regulated kinase; InR, Insulin

receptor; NO, nitric oxide; PI3K, Phospho-

inositide 3-kinase; PG, prothoracic gland;

PTTH, Prothoracicotropic hormone; TOR,

Target of rapamycin.
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genes has been an important research issue for a long
time, and the key steroidogenic transcriptional factors

(TFs) have been identified. The nuclear receptor

NR5A1, also known as Ad4BP/Steroidogenic Factor 1

(SF-1), is recognized as a master regulator for

steroidogenic gene expression, as this TF controls the

transcription of almost all steroidogenic genes in

steroidogenic tissues (Parker et al. 2002; Morohashi

et al. 2013). By contrast, elucidation of ecdysteroido-
genic TFs and their regulatory roles in insects has

lagged far behind that of mammalian steroidogenic

transcriptional regulation.

In this review, we will examine the recent progress of

the spatio-temporal transcriptional regulatory mecha-

nisms underlying ecdysteroid biosynthesis in the PG.

Based on studies published in the previous 15 years,

we will illustrate that multiple transcription factors are
cooperatively working in a network to achieve the dif-

ferentiation and morphogenesis of the PG cells, and

the appropriate control of ecdysteroid biosynthesis

during larval development. In addition, we will also dis-

cuss how TFs are regulated by extracellular stimuli,

affecting ecdysteroid biosynthesis by controlling ecdys-

teroidogenic gene expressions.

Transcription factors specify the origin of
the prothoracic gland cells

In mammals, Ad4BP/SF-1 serves as a master TF to

induce differentiation of the cell into a steroidogenic

cell lineage (Parker et al. 2002; Morohashi et al. 2013;

Mizutani et al. 2015). In insects, much less is known

about molecular mechanisms to regulate the develop-
ment of the PG itself during embryogenesis. Very

recently, S�anchez-Higueras et al. (2014) reported that

differentiation and morphogenesis of the PG requires a

proper combination of TFs during Drosophila embryo-

genesis (Fig. 2). The study demonstrates that the PG

has a homologous origin with the respiratory tracheal

system in Drosophila. The PG and the corpora allata

(CA), which biosynthesizes juvenile hormone, are
derived from identical primordia in successive seg-

ments of the head and trunk of the embryo: the PG

arises in the labial (Lb) segment, the CA arises in the

maxillary (Mx) segment, and the trachea arises in tho-

racic T2 to abdominal A8 segments. In each segment,

the identity of the PG, CA, and tracheas is initially

specified by a unique Homeotic TF with the Signal

Transducers and Activator of Transcription (STAT) via
inducing expression of the POU-domain TF gene ven-

tral veins lacking (also known as ventral veinless; vvl).

In detail, Deformed (Dfd) and Sex comb reduced (Scr)

control vvl expressions in the Mx and Lb patches, res-

pectively. Subsequently, a subgroup of vvl-expressing

cells activates the Zn-finger gene snail, a key regulator

of the epithelial-mesenchymal transition. The snail-

expressing cells then migrate dorsally and merge into

the corpora cardiaca (CC), which originates from ante-

rior mesodermal cells. In cyclorrhaphous Diptera,

including Drosophila, the PG, CA, and CC form a

composite endocrine organ “the ring gland (RG)”. The

differentiated PG and CA cells eventually express the

specific marker TF genes, spalt and seven-up, respec-

tively (S�anchez-Higueras et al. 2014). In summary, the
specification of the embryonic PG primordia requires a

specific combination of TFs, at least including Scr,

STAT, Vvl, and Snail (Fig. 2). These TF codes might be

essential for establishing the cellular status of the PG

cells expressing the special set of ecdysteroidogenic

genes.

Fig. 2. Schematic of ectodermal endocrine and respiratory pri-

mordia in embryos and their specification gene regulatory net-

work. A part of this cartoon is adapted from figure 4 in S�anchez-

Higueras et al. (2014). In each segment, Homeotic genes and

Signal Transducers and Activators of Transcription (STAT) induce

expression of the early transcription factors. Deformed (Dfd)-

STAT in the maxillary primordium (Mx) and Sex combs reduced

(Scr)-STAT in the labial primordium (Lb) induce ventral veins lack-

ing (vvl) and snail (sna) expression. Spalt (Sal) represses trunk

Homeotic gene expression in these primordia, preventing tra-

chealess (trh) expression. The sna-expressing cells undergo the

epithelial-mesenchymal transition (EMT) and migrate to form the

corpora allata (CA) and the prothoracic gland (PG) cells. The cor-

pora cardiaca (CC) cells are separately derived from anterior

mesodermal cells. Representative lineage markers are Glass (Gl)

in the CC, Seven-up (Svp) in the CA, and Sal in the PG. These

cells make a composite endocrine organ called the ring gland

(RG).
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Transcription factors are required for
expression of ecdysteroidogenic genes in
the prothoracic gland

After the PG is specified, a number of ecdysteroido-

genic enzyme genes and ecdysteroidogenic regulators

begin to be expressed, which is an important charac-

teristic of this endocrine organ. Such gene expressions
are induced and/or maintained by a number of TFs,

hereinafter referred to as “ecdysteroidogenic TFs”.

Some but not all ecdysteroidogenic TFs directly bind

to the promoters of ecdysteroidogenic genes, con-

firmed by an electrophoresis mobility shift assay or

chromatin immunoprecipitation assay (Xiang et al.

2010; Deng & Kerppola 2013; Danielsen et al. 2014;

Meng et al. 2015). The known validated and putative
ecdysteroidogenic TFs required in the PG are listed in

Table 1.

The first identified TF that influences the expression

levels of validated ecdysteroidogenic genes was bFtz-
f1, a critical regulator of insect metamorphosis in many

tissues (Parvy et al. 2005). bFtz-f1 is a homologue of
Ad4BP/SF-1, suggesting a conserved role of steroido-

genic TFs. Studies on Drosophila clearly show that the

protein levels of Phm and Dib are significantly reduced

with the loss of bFtz-f1 function in PG cells (Parvy

et al. 2005).

Most of the ecdysteroidogenic TFs, listed in Table 1,

have originally been characterized as TFs for their non-

steroidogenic functions: bFtz-f1, Ultraspiracle (USP)
(Koyama et al. 2014), Broad (Br) (Xiang et al. 2010;

Moeller et al. 2013), DHR3 (Parvy et al. 2014), and

DHR4 (Ou et al. 2011) are encoded by the well-known

ecdysteroid-inducible genes that are expressed in

many types of cells (Thummel 2001; Ou & King-Jones

2013). Other TFs are known for their roles in spatial

pattern formation. For example, Vvl described above is

involved in cellular differentiation of several types of
cells including the PG (Cheng et al. 2014; Danielsen

et al. 2014; S�anchez-Higueras et al. 2014). Knirps is

quite well known as a gap gene during embryogenesis

(Danielsen et al. 2014). Moreover, TFs involved in

Table 1. A list of ecdysteroidogenic transcription factors

TF names Protein family

Reported
ecdysteroidogenic
genes whose expression
are affected†

Organisms
analyzed in
published studies References

Antp homeotic phm Bombyx mori Meng et al. (2015)
Br C2H2 zinc finger phm, dib, sad, npc1 Drosophila melanogaster Xiang et al. (2010); Moeller

et al. (2013)
CncC basic leucine zipper nvd, spok, dib, sad D. melanogaster Deng & Kerppola (2013)
DHR3 nuclear receptor phm, dib, sad D. melanogaster Parvy et al. (2014)
DHR4 nuclear receptor Cyp6t3 D. melanogaster Ou et al. (2011)
dKeap1 BTB nvd, spok, phm, dib, sad D. melanogaster Deng & Kerppola (2013)
E75 nuclear receptor phm D. melanogaster Bialecki et al. (2002);

C�aceres et al. (2011);
Parvy et al. (2014)

EcR nuclear receptor phm, dib, sad D. melanogaster Moeller et al. (2013);
Parvy et al. (2014)

FOXO Forkhead phm, dib D. melanogaster Koyama et al. (2014)
bFtz-f1 nuclear receptor phm, dib, sad D. melanogaster Parvy et al. (2005, 2014)
Kni C2C2 zinc finger phm, dib, sad D. melanogaster Danielsen et al. (2014)
Mld‡ C2H2 zinc finger nvd, spok, sro D. melanogaster Ono et al. (2006);

Danielsen et al. (2014)
Ouib‡ C2H2 zinc finger spok D. melanogaster Komura-Kawa et al. (2015).
USP C2C2 zinc finger,

ligand binding
phm, dib D. melanogaster Koyama et al. (2014)

Vvl/POU-M2 POU spok, sro, phm, dib,

sad, torso
D. melanogaster

Tribolium castaneum

B. mori

Cheng et al. (2014);
Danielsen et al. (2014);
Meng et al. (2015)

†Underlines indicate genes whose promoter sequences can be physically associated with TFs, which are shown by electrophoresis
mobility shift assay and/or chromatin immunoprecipitation analyses. ‡It must be noted that these TF genes are found only in genomes
of Drosophilidae species. Abbreviations: Antp, Antennapedia; Br, Broad; CncC, Cap’n’collar; DHR3, Drosophila Hormone Receptor 3;
DHR4, Drosophila Hormone Receptor 4; E75, Ecdysone-induced protein 75; EcR, Ecdysone receptor; FOXO, Forkhead box, sub-group
O; bFtz-F1, b-fushi tarazu transcription factor 1; Kni, Knirps; Mld, Molting defective; Ouib, Ouija board; USP, Ultraspiracle; Vvl, Ventral
veins lacking
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metabolic responses have also been identified, such
as the Cap’n’collar (CncC)-dKeap1 complex and

Forkhead box, sub-group O (FOXO) that are mediators

of the xenobiotic metabolism signaling pathway and of

the insulin/insulin-like peptide signaling pathway,

respectively (Deng & Kerppola 2013; Koyama et al.

2014).

In addition to typical TFs, chromatin remodeling fac-

tors influence ecdysteroid biosynthesis by affecting
expression of many but not all ecdysteroidogenic

genes in the PG, as evidenced by genetic analyses on

the dATAC histone acetylase complex (Pankotai et al.

2010; Borsos et al. 2015) and the insulator protein

CTCF (Fres�an et al. 2015). It should be noted that

these chromatin remodeling factors are also known as

crucial proteins for many biological processes other

than ecdysteroid biosynthesis, indicating that these
‘generalist’-type transcription regulators act on a cer-

tain group of ecdysteroidogenic genes in the PG.

The evolutionarily conserved function of
steroidogenic TFs

Many of the ecdysteroidogenic TFs are evolutionarily

conserved across a wide variety of animal species
from insects to mammals. The most epitomized exam-

ple is bFtz-f1, an insect orthologue of vertebrate

Ad4BP/SF1. As described above, Ad4BP/SF1 is the

key regulator of vertebrate steroidogenic organ specifi-

cations and steroidogenic gene expressions (Parker

et al. 2002; Morohashi et al. 2013; Mizutani et al.

2015). It is also interesting to note that a chromosomal

deletion of a human homologue of vvl, known as
POU3F2, is associated with hypogonadotropic hypog-

onadism and adrenal insufficiency (Bonaglia et al.

2008; Izumi et al. 2013). Insect orthologues of vvl are

also involved in ecdysteroid biosynthesis not only in

D. melanogaster but also in other insects such as the

red flour beetle Tribolium castaneum (Cheng et al.

2014) and B. mori (referred as POU-M2) (Meng

et al. 2015). Therefore, the bFtz-f1/SF-1 and Vvl/
POU3F2 families emphasize the conserved regulatory

mechanisms of steroidogenesis between insects and

vertebrates.

On the other hand, the ecdysteroidogenic C2H2 zinc

finger TF Molting defective (Mld) is very unique

because its orthologues are found only in genomes of

Drosophilidae species (Neubueser et al. 2005; Ono

et al. 2006). The less conservative nature of Mld does
not mean a lesser importance of the TF; Mld plays an

essential role in ecdysteroid biosynthesis via inducing

nvd and spok (Ono et al. 2006; Danielsen et al. 2014).

It is also noteworthy that the classical temperature-

sensitive dominant mutant lethal(3)dts3, which shows

ecdysteroid deficiency (Walker et al. 1987), has been
recognized and used as an allele of mld (Simon et al.

2003; Ishimoto et al. 2013). Besides mld, we have

also recently identified another novel ecdysteroidogenic

C2H2 zinc finger TF gene designated ouija board

(ouib), which is required for expression of spok but

whose orthologues are found only in Drosophilidae

genomes (Komura-Kawa et al. 2015). These data

imply that some essential ecdysteroidogenic TFs might
have rapidly evolved only in very small insect clade(s),

and thus future studies using a variety of insects would

be valuable to unravel ecdysteroidogenic TFs that are

not well conserved in Drosophilidae.

PTTH signaling regulates transcription of
ecdysteroidogenic genes in the prothoracic
glands

In general, expression levels of ecdysteroidogenic

genes correlate well with temporal fluctuation of the

ecdysteroid titer during development. Thus, regarding

the issue of “Time in development”, an important

question to be addressed is how the ecdysteroido-

genic TFs described above contribute to timing of

ecdysteroid biosynthesis in the PG.
Previous studies have demonstrated that timing of

ecdysteroid biosynthesis in the PG is influenced by

multiple extracellular stimuli (Niwa & Niwa 2014b). The

most important and classical humoral factor is the

neuropeptide Prothoracicotropic hormone (PTTH),

which stimulates the biosynthesis and secretion of

ecdysteroids in the PG (Tanaka 2011). The temporal

coordination of PTTH secretion regulates timing of
molting and metamorphosis in many insects (Mizogu-

chi et al. 2001, 2015; Halme et al. 2010; Yamanaka

et al. 2013b). While PTTH has been extensively stud-

ied for its short-term prothoracicotropic activity, which

requires the de novo translation of proteins (Gilbert

et al. 2002), PTTH also influences transcription in the

PG, which might have a long-term effect on ecdysteroid

biosynthesis (Ou & King-Jones 2013). For example,
in vitro experimental assays have demonstrated that a

recombinant PTTH protein stimulates transcription of

spo, dib, and phm in the PG of the silkworm B. mori

(Namiki et al. 2005; Niwa et al. 2005; Yamanaka et al.

2007). Conversely, PTTH neuron-ablated animals or

loss-of-function animals of torso, which encodes a

PTTH receptor (Rewitz et al. 2009b) exhibit drastic

reduction of many ecdysteroidogenic enzyme genes in
D. melanogaster (McBrayer et al. 2007; Niwa et al.

2010; Enya et al. 2014). Therefore, the PTTH signaling

pathway in the PG, which consists of Torso, Ras

small GTPase, Raf kinase, and Extracellular signal-

related kinase (ERK) (Rewitz et al. 2009b), should
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control the activities of some ecdysteroidogenic TFs
(Fig. 1).

Although ecdysteroidogenic TFs acting downstream

of the Torso-Ras-ERK pathway are not fully under-

stood, one striking example is the nuclear receptor

DHR4 (Ou et al. 2011). The activity of DHR4 is regu-

lated by its subcellular localization between the

nucleus and cytoplasm of the PG cells. Furthermore,

DHR4 protein accumulates in the PG nuclei at devel-
opmental times when the ecdysteroid titer is high. A

crucial function of DHR4 is to negatively regulate

expression of the ecdysteroidogenic P450 gene

Cyp6t3, which functions in the ‘Black Box’ in the

biosynthesis pathway but whose substrate is still

unknown (Ou et al. 2011).

Currently, DHR4 is the only good example of ecdys-

teroidogenic TFs acting downstream of PTTH signal-
ing. Nevertheless, DHR4 is not extensively involved in

regulating expression of any other characterized

ecdysteroidogenic enzyme genes (Ou et al. 2011).

Therefore, PTTH signaling must target other ecdys-

teroidogenic TFs in the PG to control ecdysteroido-

genic gene expressions. Recently, it was shown that

loss of cncC function suppresses a developmental

acceleration phenotype of the activated Ras overex-
pression (Deng & Kerppola 2013), suggesting that the

CncC-dKeap1 complex would be a candidate acting

downstream of the PTTH signaling pathway.

Regulation of ecdysteroidogenic gene
expression in the prothoracic gland by 20-
hydroxyecdysone and the ecdysteroid-
signaling cascade

In addition to PTTH, other humoral factors that influ-

ence ecdysteroidogenic gene expressions in the PG

are ecdysteroids per se, particularly 20E, the most bio-

logically active form of ecdysteroids, and its down-

stream signaling. 20E has a large impact on

ecdysteroid biosynthesis in the PG (Gilbert et al.

2002). For example, in cultured B. mori PGs, both
ecdysteroid biosynthesis activity and responsiveness

to PTTH are inhibited by 20E administration (Takaki &

Sakurai 2003). Curiously, the inhibitory effect of 20E

on the PG is dependent on the larval developmental

stage of B. mori, implying that 20E seems to have a

feedback effect on the PG to generate a peak of

ecdysteroid level from juvenile to adult transition.

An in vivo biological significance of the feedback
effect of 20E has recently been demonstrated by

genetics of D. melanogaster (Fig. 3). During the larval

stages, reduced ecdysteroid-EcR signaling in the PG

decreases ecdysteroidogenic gene expressions, lead-

ing to a delay in the larva-to-pupa transition (Moeller

et al. 2013). This indicates that ecdysteroid has a
positive-feedback effect on the PG, rapidly amplifying

its own synthesis to trigger pupariation. Indeed, the

isoforms of the ecdysteroid-regulated factor Br, Br-Z1,

and Br-Z4 bind directly to the phm and dib promot-

ers/enhancers to regulate their transcriptions. By

contrast, after pupariation, reduced ecdysteroid-EcR

signaling increases ecdysteroidogenic gene expres-

sions, leading to incomplete metamorphosis. This
means that a negative-feedback signal ensures the

decline in ecdysteroid levels in the prepupa-to-pupa

transition. Notably, these opposing signals depend on

the different responses of Br isoforms to ecdysteroid

levels: low levels of ecdysteroid should quickly induce

Br-Z4, whereas high levels of ecdysteroid should

induce Br-Z1 that transcriptionally silences the ecdys-

teroidogenic genes (Moeller et al. 2013). The inhibitory
effect of Br is reminiscent of the fact that overexpres-

sion of Br in the PG blocks molting, and this larval

arrest phenotype can be rescued by feeding 20E

(Zhou et al. 2004).

Other ecdysteroid-response genes modulate timing

of ecdysteroid biosynthesis in the PG. Similar to the

repressive function of Br-Z1 described above, the

ecdysteroid-inducible nuclear receptor DHR3 represses
ecdysteroidogenic enzyme genes through EcR function

during the prepupal-to-pupal transition (Parvy et al.

2014). Conversely, before the transition, the other

ecdysteroid-inducible nuclear receptor E75 positively

regulates ecdysteroid biosynthesis (Bialecki et al.

2002). Indeed, E75 and bFtz-f1 counteracts DHR3 to

avoid premature repression of ecdysteroid biosynthesis

(C�aceres et al. 2011; Parvy et al. 2014). These data
demonstrate that the metamorphic 20E peak relies on

ecdysteroid-mediated feedback control of PG activity

through transcriptional regulatory networks.

E75 contains a heme moiety and thus can bind to

nitric oxide (NO), an important secondary messenger

acting as a short-range signaling molecule in a vast

array of important physiological processes (Reinking

et al. 2005). NO is produced by NO synthase (NOS) in
the PG and blocks the function of E75 (Wildemann &

Bicker 1999; C�aceres et al. 2011). While it is unclear

whether and how NO synthesis is temporally regulated

in the PG, the NO signaling pathway possibly modu-

lates ecdysteroid biosynthesis in the PG (Jaszczak

et al. 2015).

Other extracellular signals that influence
ecdysteroidogenic gene expression

Recent studies have accumulated evidence that

ecdysteroidogenic gene expression in the PGs is

influenced not only by PTTH and 20E, but also by
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other extracellular signals and their signaling pathways
(Fig. 1). These pathways include the insulin like pep-

tides-TOR pathway (Colombani et al. 2005; Koyama

et al. 2013), the TGFb/Activin-Smad pathway (Gibbens

et al. 2011), serotonin and its receptor 5HT-7

(Shimada-Niwa & Niwa 2014), octopamine and its

receptor Octb3R (Ohhara et al. 2012, 2015), and

Bommo-FMRFamide that is a prothoracicostatic neu-

ropeptide (Yamanaka et al. 2007), all of which are
required for determining the proper timing of ecdys-

teroid biosynthesis in the PG during development (Niwa

& Niwa 2014b). It will be interesting to determine which

ecdysteroidogenic TFs act downstream of any of these

signaling cascades, and whether any ecdysteroidogenic

TFs are regulated by those multiple signaling inputs.

Some ecdysteroidogenic TFs, however, control

expression of genes encoding essential components
of these signaling pathways. For example, Vvl and Kni

are required for expression of torso, Insulin receptor,

akt, 4E-BP, and S6 kinase (Danielsen et al. 2014), indi-

cating that some ecdysteroidogenic TFs directly and

indirectly regulate ecdysteroid biosynthesis by tran-

scriptional control. Related to this point, ecdysteroido-

genic TFs also regulate transcription of genes that are

involved in uptake and transport of extracellular
cholesterol or plant sterols, which are the precursors

of ecdysteroids. For example, Br plays an indispens-

able role in controlling expression of not only ecdys-
teroidogenic genes (Danielsen et al. 2014) but also the

Niemann-Pick type C1 gene, which encodes the evo-

lutionarily conserved cholesterol transporter (Xiang

et al. 2010). bFtz-f1 is also required for ecdysteroid

biosynthesis in the PG via regulating expression of a

scavenger receptor gene Snmp1, which appears to be

involved in lipid uptake in the PG cells (Talamillo et al.

2008, 2013).
It must be noted that regulatory mechanisms to con-

trol ecdysteroidogenic gene expression might be diver-

sified among insect species. For example, several

studies have reported that juvenile hormones (JHs)

have significant effects on some ecdysteroidogenic

enzyme genes and torso in the PG of B. mori (Yama-

naka et al. 2007; Young et al. 2012; Ogihara et al.

2015). This is less likely the case with the PG in
D. melanogaster, considering that JHs appear not to

have the typical “status quo” effect on larval develop-

ment in D. melanogaster (Niwa et al. 2008; Liu et al.

2009; Riddiford et al. 2010; Ono 2014; Wen et al.

2015). Furthermore, some prothoracicotropic factors

might primarily control translation, but not transcription,

in the PG. A recent example is Pigment dispersing fac-

tor (PDF), as PDF stimulates ecdysteroid biosynthesis
in the PG of B. mori but does not influence any known

ecdysteroidogenic enzyme genes (Iga et al. 2014).

Fig. 3. Feedback control of ecdysteroids affects ecdysteroidogenic gene expressions in the larva-to-pupa transition in Drosophila. The

names of TFs are listed in Table 1. In the late 3rd instar stage, ecdysteroid biosynthesis is amplified by the positive feedback of 20-

hydroxyecdysone (20E)-EcR signaling and nitric oxide (NO)-E75 signaling to trigger pupariation. Br-B4 upregulates the expressions of

ecdysteroidogenic enzyme genes such as phm and dib. After pupariation, 20E-EcR signaling negatively regulates ecdysteroid biosynthe-

sis by Br-Z1, which suppresses the expressions of ecdysteroidogenic enzyme genes. Moreover, DHR3 also represses ecdysteroidogenic

enzyme gene expressions. The positive and negative feedback circuits accomplish the temporal peak of ecdysteroid titer in the develop-

mental transition. NOS, nitric oxide synthase.
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Protein modifications and protein–protein
interactions to modulate the activity of
ecdysteroidogenic TFs

Downstream of the signaling pathways, the activity of
ecdysteroidogenic TFs must be modulated at the pro-

tein level. The striking example is the protein

SUMOylation. A recent study has demonstrated that

the activity of bFtz-f1 in ecdysteroidogenic cells,

including PG and ovarian follicle cells, is modulated by

its SUMOylation (Talamillo et al. 2008, 2013). Curi-

ously, mammalian Ad4BP/SF-1 is also SUMOylated.

Moreover, the disruption of Ad4BP/SF-1 SUMOylation
in mice exhibits the inappropriate activation of target

genes, leading to abnormalities of endocrine develop-

ment (Lee et al. 2011), suggesting that a part of post-

translational modification of ecdysteroidogenic TFs is

evolutionarily conserved between insects and verte-

brates. bFtz-f1 also appears to be controlled by its

acetylation at least in D. melanogaster cultured cells,

resulting in its protein stabilization (Borsos et al. 2015).
In addition, phosphorylation might be one of the

essential post-translational regulations in the PG, as

PTTH signaling involves the Ras-ERK pathway (Rewitz

et al. 2009b). However, currently, there are no reports

demonstrating the phosphorylation of any validated

ecdysteroidogenic TFs including DHR4 (Rewitz et al.

2009a).

Physical interactions between ecdysteroidogenic TFs
and other regulator proteins have also been recog-

nized as another layer of mechanisms regulating

ecdysteroid biosynthesis in the PG, as shown by the

interaction between USP and FOXO (Koyama et al.

2014) and among CDK8, CyclinC, EcR, and USP (Xie

et al. 2015). Further protein interactome analyses

would be important in the future.

Outlook

In the previous 15 years, significant progress has

been made that allows for a better understanding of

transcriptional regulation of ecdysteroid biosynthesis,

particularly in the fruit fly D. melanogaster. It is now

obvious that ecdysteroidogenic genes are regulated

by multiple numbers of TFs in the PG. However, the
current list of ecdysteroidogenic TFs is incomplete,

as candidate ecdysteroidogenic TFs are still present

as previously discussed (Ou & King-Jones 2013). For

example, mutant animals of without children (woc),

encoding a C2H2-type zinc finger protein, is a larval

lethal with ecdysteroid deficiency (Wismar et al.

2000). Because the mutant can be partially rescued

by feeding 7-dehydrocholesterol (Warren et al. 2001),
Woc has been hypothesized to activate transcription

of a gene involved in the cholesterol 7,8-dehydro-
genastion to produce 7dC. However, it is still

unclear whether Woc regulates the expression of

nvd, encoding cholesterol 7,8-dehydrogenase

(Yoshiyama et al. 2006), or any other downstream

targets. Another example is a basic-Helix-Loop-Helix

TF gene HLH54F that is predominantly expressed in

the PG of both D. melanogaster and B. mori (Namiki

et al. 2009). No validated targets of HLH54F in the
PG have been reported. More interestingly, the cen-

tral circadian clock genes period and timeless, which

do not encode actual TFs but regulatory proteins

modulating transcription, are rhythmically expressed

in the pupal PG and play a role in controlling eclo-

sion rhythms (Myers et al. 2003; Morioka et al.

2012). Therefore, gene expression levels of a certain

set of genes in the PG might be transcriptionally
oscillated under the control of the central clock net-

work. Identification and characterization of the oscil-

latory genes may elucidate a connection between

clock and metamorphosis.

Undoubtedly, the current studies on ecdysteroido-

genic TFs are almost only focusing on their functions

in the PG cells, while ecdysteroid biosynthesis occurs

in other types of cells during embryonic and adult
stages. In the embryo, ecdysteroid biosynthesis is acti-

vated during mid-embryogenesis before the develop-

ment of PG primordial cells. At this stage, a subset of

epidermal cells and the amnioserosa cells appears to

be responsible for ecdysteroid biosynthesis, as the

Halloween genes are strongly expressed in these cells

(Ch�avez et al. 2000; Warren et al. 2002, 2004; Petryk

et al. 2003; Niwa et al. 2004, 2010; Namiki et al.

2005; Ono et al. 2006; Yoshiyama et al. 2006; Enya

et al. 2014). Importantly, the temporal fluctuation of

the Halloween gene expressions during mid-embryo-

genesis correlates very well with that of the embryonic

ecdysteroid titer (Niwa et al. 2010; Enya et al. 2014).

In the case of the adults, female ovarian follicle cells

are the classically famous sites of ecdysteroid biosyn-

thesis and indeed require ecdysteroidogenic enzymes
for biosynthesis (Ono et al. 2006; Domanitskaya et al.

2014; Sieber & Spradling 2015) (T. Ameku and R.N.,

unpublished data). However, it is unclear which TFs

regulate such embryonic and ovarian ecdysteroido-

genic gene expressions, except for bFtz-f1 that

appears to regulate dib expression in the follicle cells

(Talamillo et al. 2013).

We must now unravel the higher regulatory mecha-
nisms that control ecdysteroid biosynthesis through

transcription. As described above, the most important

issue to draw a signaling network for controlling ecdys-

teroid biosynthesis is to understand which ecdys-

teroidogenic TFs act downstream of which extracellular
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stimulus-triggered signaling pathway. As PTTH signaling
promotes activated ERK phosphorylating nuclear target

proteins such as TFs, it is feasible to hypothesize that

PTTH signaling regulates the activity of several ecdys-

teroidogenic TFs including DHR4 (Ou et al. 2011). A

proteomic approach would be helpful to identify PTTH-

stimulated phosphorylated proteins in the PG in future,

while a previous trial using the tobacco hornworm Man-

duca sexta did not identify any known ecdysteroido-
genic TFs described above (Rewitz et al. 2009a).

>All of the evidence clearly demonstrates the neces-

sity of ecdysteroidogenic TFs to control ecdysteroido-

genic gene expression in the PG. By contrast, there is

no reported study examining whether any ecdys-

teroidogenic TFs are sufficient to induce ecdysteroido-

genic gene expression in non-steroidogenic cells. In

the case of mammals, Ad4BP/SF-1 is both necessary
and sufficient for the induction and maintenance of

steroidogenic genes. For example, overexpression of

Ad4BP/SF-1 differentiates cultured stem cells into

steroidogenic cell lineages with the expression of vari-

ous steroidogenesis-related genes (Miyamoto et al.

2011). Moreover, transgenic expression of Ad4BP/SF-

1 in mice leads to ectopic adrenal formation (Zubair

et al. 2009). By contrast, it is unlikely that bFtz-f1, the
insect homologue of Ad4BP/SF-1, acts as a master

regulator to induce ecdysteroidogenic gene expression

in the PG because bFtz-f1 plays a crucial role in

ecdysteroid-dependent transcriptional cascades not

only in the PG, but also in many other tissues (Thum-

mel 2001). Besides bFtz-f1, other ecdysteroidogenic

TFs identified to date are also highly expressed in non-

ecdysteroidogenic cells and have important functions
other than ecdysteroid biosynthesis. Therefore, it is an

interesting open question to examine whether and

how forced expression of one or more TFs can differ-

entiate the PG cells and/or induce ecdysteroidogenic

gene expression. This point might be important to

comprehensively understand the evolutionary com-

monality of steroidogenic TF function during animal

evolution.
Finally, we would like to point out that the current

published studies on ecdysteroidogenic TFs have

focused on their roles in regulating just a handful of

identified ecdysteroidogenic enzyme genes and other

known regulatory protein genes, but no studies have

examined the entire transcriptome in the PG. It is pos-

sible that the set of known genes is just the tip of the

iceberg of ecdysteroidogenic TF-regulating genes.
Interestingly, a recent study using mice reveals that

Ad4BP/SF-1 governs the coordinated regulation of not

only typical steroidogenic genes, but also essential

genes within a glycolytic pathway (Baba et al. 2014).

In the future, next-generation sequencing approaches

could help to employ RNA-sequencing to comprehen-
sively understand the ecdysteroidogenic TF-dependent

regulation of gene expression profiles at the transcrip-

tome system level.
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