80 research outputs found

    Insulino-résistance et vieillissement cardiovasculaire (un traitement chronique par le resvératrol peut-il les améliorer ?)

    Get PDF
    Le vieillissement de la population est le résultat de l amélioration de la prise en charge des individus, en particulier des sujets âgés, conduisant à l apparition d une nouvelle catégorie démographique, le quatrième âge avec les plus de 75 ans. Cette population polypathologique présente de nombreuses spécificités, avec entre autres, une intolérance au glucose, un état de dénutrition et une altération des fonctions cardiovasculaires, les maladies cardiovasculaires restant la première cause de mortalité dans cette tranche d âge. Comme évoqué dès les années 50 par Harman, le stress oxydant pourrait jouer un rôle important dans l ensemble de ces comorbidités. Le resvératrol, un polyphénol anti-oxydant connu pour ses biens-faits cardiovasculaires pourrait ainsi être une molécule d intérêt dans ce contexte. Nos objectifs dans ce travail ont donc été d évaluer les effets d un traitement chronique par le resvératrol accompagné ou non d une prise en charge nutritionnelle chez la souris très âgée. Ces effets du resvératrol ont été étudiés aussi bien sur le plan métabolique que sur le phénotype cardiovasculaire. Nos résultats montrent qu un régime riche en protéines et pauvre en glucides a des effets variables en fonction de l âge. Sans effet sur la souris jeune, il devient délétère chez la souris adulte et très âgée avec une majoration de l altération de l homéostasie glucidique associée à une détérioration du bilan lipidique. Ces dysrégulations métaboliques ont pour conséquence une dégradation accrue des fonctions artérielles et cardiaques. Chez la souris très âgée, un traitement par le resvératrol amplifie les dommages liés à ce régime en accentuant les altérations métaboliques et cardiovasculaires, soulignant, et ce pour la première fois, de potentiels effets délétères du resvératrol dans le cadre du vieillissement. En revanche, chez la souris âgée dénutrie en l absence de prise en charge nutritionnelle, le resvératrol présente des effets bénéfiques avec une amélioration de l insulino-sensibilité et des fonctions artérielles, associée à une modification d expression de TXNIP, protéine à l interface de la régulation de l homéostasie du glucose et de la balance oxydative, faisant d elle une piste à explorer tant pour expliquer certains mécanismes impliqués dans le vieillissement que dans les effets du resvératrol.The aging of the population is the result of the improvement of the care of individuals, especially the elderly, leading to the emergence of a new demographic category, the fourth age with people more than 75 years old. This polypathological population has many specificities, with among other things, glucose intolerance, a state of malnutrition and impaired cardiovascular function. Cardiovascular disease remains the leading cause of death in this age group. As mentioned in the 50s by Harman, oxidative stress may play an important role in all of these diseases. Resveratrol, an antioxidant polyphenol known for its properties on cardiovascular events could thus be a molecule of interest in this context. Our objectives in this study were therefore to assess the effects of chronic treatment with resveratrol with or without a nutritional care in the very old mice. These metabolic and cardiovascular effects of resveratrol have been studied. Our results show that a high protein and low carbohydrate diet has different effects depending on age. Despite no effect have been observed on young mice, this diet becomes deleterious in adult and very old mice with an increase of impaired glucose homeostasis associated with a deterioration of the lipid profile. These metabolic dysregulations result in a further deterioration of arterial and cardiac function. In the very old mice, treatment with resveratrol boosts the damage related to this plan by increasing the metabolic and cardiovascular alterations, highlighting, for the first time, potential deleterious effects of resveratrol in aging. However, in elderly malnourished mice in the absence of nutritional care, resveratrol has beneficial effects with improved insulin sensitivity and arterial functions associated with altered expression of TXNIP, protein regulating glucose homeostasis and oxidative balance, making it worth exploring as to explain some of the mechanisms involved in aging and in the effects of resveratrol.PARIS5-Bibliotheque electronique (751069902) / SudocSudocFranceF

    Resveratrol Decreases TXNIP mRNA and Protein Nuclear Expressions With an Arterial Function Improvement in Old Mice

    Get PDF
    Aging leads to a high prevalence of glucose intolerance and cardiovascular diseases, with oxidative stress playing a potential role. Resveratrol has shown promising effects on glucose tolerance and tends to improve endothelial function in elderly patients. Thioredoxin-interacting protein (TXNIP) was recently proposed as a potential link connecting glucose metabolism to oxidative stress. Here, we investigated the resveratrol-induced improvement of arterial aging phenotype in old mice and the expression of aortic TXNIP. Using an in vivo model of old mice with or without 3-month resveratrol treatment, we investigated the effects of resveratrol on age-related impairments from a cardiovascular Doppler analysis, to a molecular level, by studying inflammation and oxidative stress factors. We found a dual effect of resveratrol, with a decrease of age-related glucose intolerance and oxidative stress imbalance leading to reduced matrix remodeling that forestalls arterial aging phenotype in terms of intima-media thickness and arterial distensibility. These results provide the first evidence that aortic TXNIP mRNA and protein nuclear expressions are increased in the arterial aging and decreased by resveratrol treatment. In conclusion, we demonstrated that resveratrol helped to restore several aging impaired processes in old mice, with a decrease of aortic TXNIP mRNA and protein nuclear expression

    High-protein-low-carbohydrate diet: deleterious metabolic and cardiovascular effects depend on age

    Get PDF
    High-protein-low-carbohydrate (HP-LC) diets have become widespread. Yet their deleterious consequences, especially on glucose metabolism and arteries, have already been underlined. Our previous study (2) has already shown glucose intolerance with major arterial dysfunction in very old mice subjected to an HP-LC diet. The hypothesis of this work was that this diet had an age-dependent deleterious metabolic and cardiovascular outcome. Two groups of mice, young and adult (3 and 6 mo old), were subjected for 12 wk to a standard or to an HP-LC diet. Glucose and lipid metabolism was studied. The cardiovascular system was explored from the functional stage with Doppler-echography to the molecular stage (arterial reactivity, mRNA, immunohistochemistry). Young mice did not exhibit any significant metabolic modification, whereas adult mice presented marked glucose intolerance associated with an increase in resistin and triglyceride levels. These metabolic disturbances were responsible for cardiovascular damages only in adult mice, with decreased aortic distensibility and left ventricle dysfunction. These seemed to be the consequence of arterial dysfunctions. Mesenteric arteries were the worst affected with a major oxidative stress, whereas aorta function seemed to be maintained with an appreciable role of cyclooxygenase-2 to preserve endothelial function. This study highlights for the first time the age-dependent deleterious effects of an HP-LC diet on metabolism, with glucose intolerance and lipid disorders and vascular (especially microvessels) and cardiac functions. This work shows that HP-LC lead to equivalent cardiovascular alterations, as observed in very old age, and underlines the danger of such diet

    Experimental validation of an ultrasonic flowmeter for unsteady flows

    Get PDF
    An ultrasonic flowmeter was developed for further applications in cryogenic conditions and for measuring flow rate fluctuations in the range of 0 to 70 Hz. The prototype was installed in a flow test rig, and was validated experimentally both in steady and unsteady water flow conditions. A Coriolis flowmeter was used for the calibration under steady state conditions, whereas in the unsteady case the validation was done simultaneously against two methods: particle image velocimetry (PIV), and with pressure transducers installed flush on the wall of the pipe. The results show that the developed flowmeter and the proposed methodology can accurately measure the frequency and amplitude of unsteady fluctuations in the experimental range of 0–9 l s−1 of the mean main flow rate and 0–70 Hz of the imposed disturbancesArianeGrou

    Resveratrol Improved Flow-Mediated Outward Arterial Remodeling in Ovariectomized Rats with Hypertrophic Effect at High Dose

    Get PDF
    OBJECTIVES: Chronic increases in blood flow in resistance arteries induce outward remodeling associated with increased wall thickness and endothelium-mediated dilatation. This remodeling is essential for collateral arteries growth following occlusion of a large artery. As estrogens have a major role in this remodeling, we hypothesized that resveratrol, described as possessing phytoestrogen properties, could improve remodeling in ovariectomized rats. METHODS: Blood flow was increased in vivo in mesenteric arteries after ligation of adjacent arteries in 3-month old ovariectomized rats treated with resveratrol (5 or 37.5 mg/kg per day: RESV5 or RESV37.5) or vehicle. After 2 weeks arterial structure and function were measured in vitro in high flow (HF) and normal flow (NF) arteries isolated from each rat. RESULTS: Arterial diameter was greater in HF than in NF arteries in ovariectomized rats treated with RESV5 or RESV37.5, not in vehicle-treated rats. In mice lacking estrogen receptor alpha diameter was equivalent in HF and NF arteries whereas in mice treated with RESV5 diameter was greater in HF than in NF vessels. A compensatory increase in wall thickness and a greater phenylephrine-mediated contraction were observed in HF arteries. This was more pronounced in HF arteries from RESV37.5-treated rats. ERK1/2 phosphorylation, involved in hypertrophy and contraction, were higher in RESV37.5-treated rats than in RESV5- and vehicle-treated rats. Endothelium-dependent relaxation was greater in HF than in NF arteries in RESV5-treated rats only. In HF arteries from RESV37.5-treated rats relaxation was increased by superoxide reduction and markers of oxidative stress (p67phox, GP91phox) were higher than in the 2 other groups. CONCLUSION: Resveratrol improved flow-mediated outward remodeling in ovariectomized rats thus providing a potential therapeutic tool in menopause-associated ischemic disorders. This effect seems independent of the estrogen receptor alpha. Nevertheless, caution should be taken with high doses inducing excessive contractility and hypertrophy in association with oxidative stress in HF arteries

    Resveratrol Directly Binds to Mitochondrial Complex I and Increases Oxidative Stress in Brain Mitochondria of Aged Mice

    Get PDF
    Resveratrol is often described as a promising therapeutic molecule for numerous diseases, especially in metabolic and neurodegenerative disorders. While the mechanism of action is still debated, an increasing literature reports that resveratrol regulates the mitochondrial respiratory chain function. In a recent study we have identified mitochondrial complex I as a direct target of this molecule. Nevertheless, the mechanisms and consequences of such an interaction still require further investigation. In this study, we identified in silico by docking study a binding site for resveratrol at the nucleotide pocket of complex I. In vitro, using solubilized complex I, we demonstrated a competition between NAD+ and resveratrol. At low doses (<5μM), resveratrol stimulated complex I activity, whereas at high dose (50 μM) it rather decreased it. In vivo, in brain mitochondria from resveratrol treated young mice, we showed that complex I activity was increased, whereas the respiration rate was not improved. Moreover, in old mice with low antioxidant defenses, we demonstrated that complex I activation by resveratrol led to oxidative stress. These results bring new insights into the mechanism of action of resveratrol on mitochondria and highlight the importance of the balance between pro- and antioxidant effects of resveratrol depending on its dose and age. These parameters should be taken into account when clinical trials using resveratrol or analogues have to be designed

    Etude des polymorphismes du gène de la catalase dans la dénutrition des sujets âgés

    No full text
    PARIS-BIUP (751062107) / SudocSudocFranceF
    corecore