229 research outputs found

    A simple model of decision-making in the application process

    Full text link
    In decision-making, individuals often rely on intuition, which can occasionally yield suboptimal outcomes. This study examines the impact of intuitive decision-making on individuals who are confronted with limited position information in the job application process. We propose a measure, the mismatch index, that gauges allocation efficiency by comparing the final application rate to the preset admission rate. By simulation and analytical results, we counter-intuitively find that under the intuitive strategy, acquiring more information does not always lead to more efficient allocation. Additionally, a shift from despondency to a bandwagon effect occurs when the initial application rate surpasses the admission rate, which can be observed in our field experiments. Meanwhile, experimental data also unveil variations in individuals' reliance on intuition, indicating the presence of inherent adventurous and conservative inclinations. To account for these effects, we introduce an enhancement factor into our model. The improved results align well with these real data, showing that compared to mediate competitive scenarios, individuals exhibit a stronger conservative tendency in fierce or less competitive scenarios. These findings offer significant insights into resource allocation, especially in the competitive job market context.Comment: 18 pages, 4 figure

    Domain-dependent evolution explains functional homology of protostome and deuterostome complement C3-like proteins

    Get PDF
    Complement proteins emerged early in evolution but outside the vertebrate clade they are poorly characterized. An evolutionary model of C3 family members revealed that in contrast to vertebrates the evolutionary trajectory of C3-like genes in cnidarian, protostomes and invertebrate deuterostomes was highly divergent due to independent lineage and species-specific duplications. The deduced C3-like and vertebrate C3, C4 and C5 proteins had low sequence conservation, but extraordinarily high structural conservation and 2-chain and 3-chain protein isoforms repeatedly emerged. Functional characterization of three C3-like isoforms in a bivalve representative revealed that in common with vertebrates complement proteins they were cleaved into two subunits, b and a, and the latter regulated inflammation-related genes, chemotaxis and phagocytosis. Changes within the thioester bond cleavage sites and the a-subunit protein (ANATO domain) explained the functional differentiation of bivalve C3-like. The emergence of domain-related functions early during evolution explains the overlapping functions of bivalve C3-like and vertebrate C3, C4 and C5, despite low sequence conservation and indicates that evolutionary pressure acted to conserve protein domain organization rather than the primary sequence.info:eu-repo/semantics/publishedVersio

    κ

    Get PDF
    Background. The dietary usage of carrageenan as common food additive has increased observably over the last 50 years. But there is substantial controversy about its safety. Methods. We investigated whether the κ-carrageenan could enhance lipopolysaccharide-induced IL-8 expression by studying its actions on the TLR4-NF-κB pathway. The aggravating effect of κ-carrageenan on Citrobacter freundii DBS100-induced intestinal inflammation was also investigated in a mouse model. Results. Our data show that κ-carrageenan pretreatment promoted LPS-induced IL-8 expression in HT-29 cells. Although CD14, MD-2, and TLR4 were upregulated, the binding of LPS was not enhanced. However, the pathway of Bcl10-NF-κB was triggered. Interestingly, κ-carrageenan competitively blocked the binding of FITC-LPS. Furthermore, pretreatment with κ-carrageenan for one week previous to gavage with C. freundii DBS100 markedly aggravated weight loss, mortality, and colonic damage. The secretion of cytokines was unbalanced and the ratio of Tregs was decreased significantly. In addition, κ-carrageenan, together with C. freundii DBS100, enhanced the transcription and secretion of TLR4 and NF-κB. Conclusions. κ-Carrageenan can synergistically activate LPS-induced inflammatory through the Bcl10-NF-κB pathway, as indicated by its aggravation of C. freundii DBS100-induced colitis in mice. General Significance. Our results suggest that κ-carrageenan serves as a potential inflammatory agent that magnifies existing intestinal inflammation

    Optimal selection of time functions for describing coal mining-induced dynamic subsidence at single surface point using AIC criterion

    Get PDF
    The time function method is one of the most commonly used methods for predicting surface dynamic displacements in coal mine areas. In which, the accuracy and reliability of the predicted displacements, to a large extent, depends on the selected mathematical functions for describing the “S”-typed dynamic subsidence at a single surface point (referred to as time functions). Nearly all of the existing studies primarily improve or introduce “S”-shaped growth functions with a single object to minimizing the fitting residuals between the in-situ monitored and the model-fitted subsidence. Such a strategy, however, would result in “overfitting” (or over-parameterization), thereby increasing the complexity of the constructed time function model and the difficulty of model parameter inversion. To this end, the optimal selection of time functions was analyzed in this paper using two indicators of fitting residual and model complexity, rather than the former one in existing studies. More specifically, time-series subsidence observations at 103 field points in seven coal mining areas with different geological mining conditions were selected to be observation samples for ensuring the applicability of the optimal time function. Then, 12 common “S-shaped” growth models were chosen to candidates, and the theoretical analysis and Akaike information criterion (AIC) were further used to analyze the optimal selection of time function from the chosen 12 “S”-shaped models. The results show that: ① Among the 12 selected models, the mean mis-fitting error of the five four-parameter models is about 3.51 cm, which is obviously smaller than that of the two-parameter Knothe model (14.10 cm), but just slightly smaller than the six three-parameter models (4.78 cm); ② In the view of making a trade-off between fitting residuals and model complexity (assessing by the AIC), the AICs of the six three-parameter models are smaller than those of the four-parameter and two-parameter models.This indicates that the three-parameters models are preferrable to describe the temporal evolution of subsidence at a single point, and the four-parameter and two-parameters models may be over-fitted and under-fitted, respectively; ③ Among the six selected models, the optimal selection of time function is related to the lithology of the overburden rock strata; that is, Hossfeld model, which has not been introduced into the time function method, is preferrable under soft and medium-hard overburden strata, whereas Weibull model is preferrable under hard overburden strata

    Guests mediated supramolecule-modified gold nanoparticles network for mimic enzyme application

    Get PDF
    Supramolecules mediated porous metal nanostructures are meaningful materials because of their specific properties and wide range of applications. Here, we describe a general and simple strategy for building Au networks based on the guest-induced 3D assembly of Au nanoparticle (AuNPs). Coming host-guest interaction resolved sulfonatocalix[4]arene (pSC4)-modified AuNP aggregate. The diverse guest molecules induced different porous network structures resulting in their different oxidize ability toward glucose. Among three different kinds of guest, hexamethylenediamine-pSC4-AuNPs have high sensitivity, wide linear range and good stability. By surface characterization and calculating the electrochemical properties of the AuNPs networks modified glassy carbon electrodes, the giving AuNPs network reveals good porosity, high surface areas and increased conductance and electron transfer for the electrocatalysis. The synthesized AuNPs nano-structures afford fast transport of glucose and ensure contact with a larger reaction surface due to high surface area. The fabricated sensor provides a platform for developing a more stable and efficient glucose sensor based on supramolecules mediated AuNPs networks

    Guests mediated supramolecule-modified gold nanoparticles network for mimic enzyme application

    Get PDF
    1434-1441Supramolecules mediated porous metal nanostructures are meaningful materials because of their specific properties and wide range of applications. Here, we describe a general and simple strategy for building Au-networks based on the guest-induced 3D assembly of Au nanoparticles (Au-NPs) resulted in host-guest interaction resolved sulfonatocalix[4]arene (pSC4)-modified Au-NPs aggregate. The diverse guest molecules induced different porous network structures resulting in their different oxidize ability toward glucose. Among three different kinds of guest, hexamethylenediamine-pSC4-Au-NPs have high sensitivity, wide linear range and good stability. By surface characterization and calculating the electrochemical properties of the Au-NPs networks modified glassy carbon electrodes, the giving Au-NPs network reveals good porosity, high surface areas and increased conductance and electron transfer for the electrocatalysis. The synthesized nano-structures afford fast transport of glucose and ensure contact with a larger reaction surface due to high surface area. The fabricated sensor provides a platform for developing a more stable and efficient glucose sensor based on supramolecules mediated Au-NPs networks

    Seasonal variations of C-1-C-4 alkyl nitrates at a coastal site in Hong Kong: Influence of photochemical formation and oceanic emissions

    Get PDF
    Five C-1-C-4 alkyl nitrates (RONO2) were measured at a coastal site in Hong Kong in four selected months of 2011 and 2012. The total mixing ratios of C-1-C-4 RONO2 (Sigma 5RONO2) ranged from 15.4 to 143.7 pptv with an average of 65.9 +/- 33.0 pptv. C-3-C-4 RONO2 (2-butyl nitrate and 2-propyl nitrate) were the most abundant RONO2 during the entire sampling period. The mixing ratios of C-3-C-4 RONO2 were higher in winter than those in summer, while the ones of methyl nitrate (MeONO2) were higher in summer than those in winter. Source analysis suggests that C-2-C-4 RONO2 were mainly derived from photochemical formation along with biomass burning (58.3-71.6%), while ocean was a major contributor to MeONO2 (53.8%) during the whole sampling period. The photochemical evolution of C-2-C-4 RONO2 was investigated, and found to be dominantly produced by the parent hydrocarbon oxidation. The notable enrichment of MeONO2 over C-3-C-4 RONO2 was observed in a summer episode when the air masses originating from the South China Sea (SCS) and MeONO2 was dominantly derived from oceanic emissions. In order to improve the accuracy of ozone (O-3) prediction in coastal environment, the relative contribution of RONO2 from oceanic emissions versus photochemical formation and their coupling effects on O-3 production should be taken into account in future studies. (C) 2017 Elsevier Ltd. All rights reserved
    corecore