8,978 research outputs found

    Nonequilibrium composition profiles of alloy quantum dots and their correlation with the growth mode

    Get PDF
    Journal ArticleEquilibrium composition profiles (CPs) of epitaxial alloy quantum dots (QDs) are well established theoretically. However nonequilibrium CPs may occur experimentally. Using an atomistic-strain-model Monte Carlo simulation method, we demonstrate a striking correlation between the nonequilibrium CPs of QDs and the kinetic growth mode: the layer-by-layer growth (LG) and faceted growth (FG) form a coreshell structure having the triangle core of the unstrained and V-shaped core of the strained component, respectively, and both are distinctly different from the equilibrium CP. Comparing simulations with experiments, we infer that the InGaAs dots on GaAs grow by FG, while GeSi dots on Si grow first by LG followed by FG. Our findings suggest a possible method for controlling the CPs of QDs by selecting the growth mode

    Two-Dimensional Inversion Asymmetric Topological Insulators in Functionalized III-Bi Bilayers

    Full text link
    The search for inversion asymmetric topological insulators (IATIs) persists as an effect for realizing new topological phenomena. However, so for only a few IATIs have been discovered and there is no IATI exhibiting a large band gap exceeding 0.6 eV. Using first-principles calculations, we predict a series of new IATIs in saturated Group III-Bi bilayers. We show that all these IATIs preserve extraordinary large bulk band gaps which are well above room-temperature, allowing for viable applications in room-temperature spintronic devices. More importantly, most of these systems display large bulk band gaps that far exceed 0.6 eV and, part of them even are up to ~1 eV, which are larger than any IATIs ever reported. The nontrivial topological situation in these systems is confirmed by the identified band inversion of the band structures and an explicit demonstration of the topological edge states. Interestingly, the nontrivial band order characteristics are intrinsic to most of these materials and are not subject to spin-orbit coupling. Owning to their asymmetric structures, remarkable Rashba spin splitting is produced in both the valence and conduction bands of these systems. These predictions strongly revive these new systems as excellent candidates for IATI-based novel applications.Comment: 17 pages,5figure

    Electron Depletion Due to Bias of a T-Shaped Field-Effect Transistor

    Full text link
    A T-shaped field-effect transistor, made out of a pair of two-dimensional electron gases, is modeled and studied. A simple numerical model is developed to study the electron distribution vs. applied gate voltage for different gate lengths. The model is then improved to account for depletion and the width of the two-dimensional electron gases. The results are then compared to the experimental ones and to some approximate analytical calculations and are found to be in good agreement with them.Comment: 16 pages, LaTex (RevTex), 8 fig

    Spin and orbital moments of ultra-thin Fe films on various semiconductor surfaces

    Get PDF
    The magnetic moments of ultrathin Fe films on three different III-V semiconductor substrates, namely GaAs, InAs and In0.2Ga0.8As have been measured with X-ray magnetic circular dichroism at room temperature to assess their relative merits as combinations suitable for next-generation spintronic devices. The results revealed rather similar spin moments and orbital moments for the three systems, suggesting the relationship between film and semiconductor lattice parameters to be less critical to magnetic moments than magnetic anisotropy

    Temperature dependence of electron-spin relaxation in a single InAs quantum dot at zero applied magnetic field

    Full text link
    The temperature-dependent electron spin relaxation of positively charged excitons in a single InAs quantum dot (QD) was measured by time-resolved photoluminescence spectroscopy at zero applied magnetic fields. The experimental results show that the electron-spin relaxation is clearly divided into two different temperature regimes: (i) T < 50 K, spin relaxation depends on the dynamical nuclear spin polarization (DNSP) and is approximately temperature-independent, as predicted by Merkulov et al. (ii) T > about 50 K, spin relaxation speeds up with increasing temperature. A model of two LO phonon scattering process coupled with hyperfine interaction is proposed to account for the accelerated electron spin relaxation at higher temperatures.Comment: 10 pages, 4 figure

    Group-based susceptible-infectious-susceptible model in large-scale directed networks

    Full text link
    © 2019 Xu Wang et al. Epidemic models trade the modeling accuracy for complexity reduction. This paper proposes to group vertices in directed graphs based on connectivity and carries out epidemic spread analysis on the group basis, thereby substantially reducing the modeling complexity while preserving the modeling accuracy. A group-based continuous-time Markov SIS model is developed. The adjacency matrix of the network is also collapsed according to the grouping, to evaluate the Jacobian matrix of the group-based continuous-time Markov model. By adopting the mean-field approximation on the groups of nodes and links, the model complexity is significantly reduced as compared with previous topological epidemic models. An epidemic threshold is deduced based on the spectral radius of the collapsed adjacency matrix. The epidemic threshold is proved to be dependent on network structure and interdependent of the network scale. Simulation results validate the analytical epidemic threshold and confirm the asymptotical accuracy of the proposed epidemic model

    MPC-Based Haptic Shared Steering System: A Driver Modeling Approach for Symbiotic Driving

    Get PDF
    Advanced Driver Assistance Systems (ADAS) aim to increase safety and reduce mental workload. However, the gap in the understanding of the closed-loop driver-vehicle interaction often leads to reduced user acceptance. In this study, an optimal torque control law is calculated online in the Model Predictive Control (MPC) framework to guarantee continuous guidance during the steering task. The research contribution is in the integration of an extensive prediction model covering cognitive behaviour, neuromuscular dynamics, and the vehicle- steering dynamics, within the MPC-based haptic controller to enhance collaboration. The driver model is composed of a preview cognitive strategy based on a Linear-Quadratic-Gaussian, sensory organs, and neuromuscular dynamics, including muscle co-activation and reflex action. Moreover, an adaptive cost-function algorithm enables dynamic allocation of the control authority. Experiments were performed in a fixed-base driving simulator at Toyota Motor Europe involving 19 participants to evaluate the proposed controller with two different cost functions against a commercial Lane Keeping Assist (LKA) system as an industry benchmark. The results demonstrate the proposed controller fosters symbiotic driving and reduces driver-vehicle conflicts with respect to a state-of-the-art commercial system, both subjectively and objectively, while still improving path-tracking performance. Summarising, this study tackles the need to blend human and ADAS control, demonstrating the validity of the proposed strategy
    corecore