518 research outputs found

    Escherichia coli proteomics and bioinformatics

    Get PDF
    A lot of things happen to proteins when Escherichia coli cells enter stationary phase, such as protein amount, post-translational modifications, conformation changes, and component of protein complex. Proteomics, which study the whole component of proteins, can be used to study the products of the genome and the physiology of Escherichia coli cells at different conditions. By comparing proteome from different growth phases, such as exponential and stationary phase, a lot of proteins with changes can be identified at the same time, which provides a pilot for further studies of mechanism. Current global proteomic studies have identified about 27% of the annotated proteins of E. coli, most of which are predicted to be abundance proteins. Subproteomics, the study of specific subsets of the proteome, can be used to study specific functional classes of proteins and low abundance proteins. In this dissertation, using non-denatured anion exchange column with 2D SDS-PAGE and tandem mass spectrometry, difference of E. coli cells between exponential and stationary phase were studied for whole soluble proteome. Also, using heparin column and mass spectrometry with tandem mass spectrometry, heparin-binding proteins were identified and analyzed for exponential growth and stationary phases. To manage and display the data generated by proteomics, a web-based database has been constructed for experiments in E. coli proteomics (EEP), which includes NonDeLC, Heparome, AIX/2D PAGE and other proteomic studies

    Can Chinese students make a rational decision when choosing university and university course?

    Get PDF
    More and more Chinese students are coming to UK for their higher education; this can be called as education consumption. For this consumption, the first decision the consumers need to make is choosing a university and course they are going to attend, just like which products they are going to buy. However, during this process, whether this consumption is rational or irrational for these overseas students; how and what factors influenced their decision making process are the core issues to research. This paper used the theory of consumer's psychology and the theory of decision making process, and also based on the statistics models to examine these problems. It states that the Chinese students consumption psychology is strongly influenced by Chinese culture; and the output of this paper also proved the Chinese students whether can make rational consumption and make good decision depends on their learning purpose and learning motivation. The clear purpose and strong motivation will make the Chinese students, or called consumers, to set and follow a comprehensive decision making process before choosing university and course. All of these researches help to understand Chinese students' consumption psychology when doing education consumption, and also help Chinese students, to preview or review their behaviors of choosing their universities and course

    Photothermally Induced Alkyl Radicals and Pyroptosis Synergistically Inhibit Breast Tumor Growth

    Get PDF
    Photothermal therapy (PTT) is an emerging local tumor ablation technique with clinical translation potential. After the NIR-II laser irradiates the tumor, the photothermal agent Hu-Kaiwen ink (Ink) converts light energy into hyperthermia and maintains the temperature at 42-45°C, thus achieving a low-temperature photothermal therapy. Alkyl radicals can kill tumor cells by overcoming the hypoxic microenvironment of the tumor. The photothermal reaction can induce the conversion of alkyl radicals from 2,2′-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH) and thus have a synergistic tumor inhibition effect. the DNA methyltransferase inhibitor decitabine (DCT) can induce pyroptosis and cause inflammation and immune response to achieve systemic immunity. In this way, a synergistic combination of photothermal, alkyl radicals and pyroptosis could be used to kill breast tumor cells. Sodium alginate (ALG) was used as a carrier to form a hydrogel structure, which can improve the stability and duration of action of the mixed drugs. The significant tumor growth inhibitory effect of composite hydrogels has been demonstrated in both in vitro and ex vivo studies

    Can the digital economy promote the development of the energy economy? Evidence from China

    Get PDF
    In this paper, 22 indexes are selected at three levels, including the informatization development level, the Internet development level, and the digital transaction development level, based on China’s provincial panel data from 2011 to 2020, so as to build a digital economy development index system. Moreover, 28 basic indexes are selected from three aspects, including energy construction, energy production and energy consumption, so as to develop an energy economy development evaluation index system. The development index of China’s digital economy and energy economy are measured by using the entropy weight method. The effect of the digital economy on the energy economy and its mechanism are tested by the static panel, the dynamic panel, and the mediating effect and regulating effect models. The results indicate that the digital economy has pronouncedly promoted the development of China’s energy economy, and the development of the digital economy can have an effect on the rationalization of the industrial structure and then affect the development of the energy economy, and there is an intermediary effect. Moreover, the upgrading of the industrial structure is conducive to regulating the digital economy and facilitates the development of the energy economy. The development of the energy economy can be better promoted by focusing on the coordinated regional layout of the digital economy development, building a reliable energy commodity trading platform, and expediting the optimization and upgrading of the industrial structure

    SunSat Design Competition 2014-2015 First Place Winner – Team CAST: Multi-Rotary Joints SPS

    Get PDF
    Space Power Satellite (SPS) is a huge spacecraft designed to collect solar energy in space for supplying electric power to the electric grid on the ground. The SPS concept was first proposed by Dr. Peter Glaser in 1968. Various studies on SPS in various countries have been produced over the past forty years. Today, there are multiple variations on this early concept, both in innovation and in optimization. Because of the huge size, immense mass and high power of these SPS installations, there are many technological difficulties. Here, a new Multi-Rotary Joints SPS (MR-SPS) concept is proposed. The large solar array is taken apart to illustrate the many small solar sub-arrays, and to show that each solar sub-array has two middle-power rotary joints. The extreme technical difficulty of high-power rotary joints is simplified by many middle-power rotary joints. The single-point failure problem existing in traditional SPS concept is also solved. At the same time, the modular solar arrays can be more easily assembled in GEO where the power can best be generated and continuously transmitted. Based on our new concept, a whole system full-life NPV analysis method has been developed to evaluate the economics. Our primary results show that the investment is near 30 billion US dollars, with development and transportation costs representing the main portions. When the price of power and the development and construction costs are fixed, the cost of capital becomes an important parameter in influencing the NPV. Click here to see the China Academy of Space Technology\u27s (CAST) video: Multi-Rotary Joints SPS - 2015 SunSat Design Competitio

    High affinity binding of H3K14ac through collaboration of bromodomains 2, 4 and 5 is critical for the molecular and tumor suppressor functions of PBRM1.

    Get PDF
    Polybromo-1 (PBRM1) is an important tumor suppressor in kidney cancer. It contains six tandem bromodomains (BDs), which are specialized structures that recognize acetyl-lysine residues. While BD2 has been found to bind acetylated histone H3 lysine 14 (H3K14ac), it is not known whether other BDs collaborate with BD2 to generate strong binding to H3K14ac, and the importance of H3K14ac recognition for the molecular and tumor suppressor function of PBRM1 is also unknown. We discovered that full-length PBRM1, but not its individual BDs, strongly binds H3K14ac. BDs 2, 4, and 5 were found to collaborate to facilitate strong binding to H3K14ac. Quantitative measurement of the interactions between purified BD proteins and H3K14ac or nonacetylated peptides confirmed the tight and specific association of the former. Interestingly, while the structural integrity of BD4 was found to be required for H3K14ac recognition, the conserved acetyl-lysine binding site of BD4 was not. Furthermore, simultaneous point mutations in BDs 2, 4, and 5 prevented recognition of H3K14ac, altered promoter binding and gene expression, and caused PBRM1 to relocalize to the cytoplasm. In contrast, tumor-derived point mutations in BD2 alone lowered PBRM1\u27s affinity to H3K14ac and also disrupted promoter binding and gene expression without altering cellular localization. Finally, overexpression of PBRM1 variants containing point mutations in BDs 2, 4, and 5 or BD2 alone failed to suppress tumor growth in a xenograft model. Taken together, our study demonstrates that BDs 2, 4, and 5 of PBRM1 collaborate to generate high affinity to H3K14ac and tether PBRM1 to chromatin. Mutations in BD2 alone weaken these interactions, and this is sufficient to abolish its molecular and tumor suppressor functions

    Defining NASH from a multi-omics systems biology perspective

    Get PDF
    Non-alcoholic steatohepatitis (NASH) is a chronic liver disease affecting up to 6.5% of the general population. There is no simple definition of NASH, and the molecular mechanism underlying disease pathogenesis remains elusive. Studies applying single omics technologies have enabled a better understanding of the molecular profiles associated with steatosis and hepatic inflammation—the commonly accepted histologic features for diagnosing NASH, as well as the discovery of novel candidate biomarkers. Multi-omics analysis holds great potential to uncover new insights into disease mechanism through integrating multiple layers of molecular information. Despite the technical and computational challenges associated with such efforts, a few pioneering studies have successfully applied multi-omics technologies to investigate NASH. Here, we review the most recent technological developments in mass spectrometry (MS)-based proteomics, metabolomics, and lipidomics. We summarize multi-omics studies and emerging omics biomarkers in NASH and highlight the biological insights gained through these integrated analyses
    • …
    corecore