35 research outputs found

    Comparison of two chromogenic media and evaluation of two molecular based identification systems for Enterobacter sakazakii detection

    Get PDF
    BACKGROUND: Enterobacter sakazakii is a foodborne pathogen that has been associated with sporadic cases and outbreaks causing meningitis, necrotizing enterocolitis and sepsis especially in neonates. The current FDA detection method includes two enrichment steps, the subculturing of the second enrichment broth on a selective agar (VRBG), a further subculturing of selected grown colonies on TSA and the subsequent biochemical identification of yellow-pigmented colonies by API20E. However, there is a strong need for simplified methods for isolation and identification of E. sakazakii. In this study, two chromogenic media, which allow to indicate presumptive E. sakazakii colonies by the alpha glucosidase activity, as well as a newly developed 1,6-alpha-glucosidase based conventional PCR assay and a rRNA oligonucleotide probe based commercial test system for identification of presumptive E. sakazakii were evaluated on 98 target and non-target strains. The methods were compared with respect to specificity aspects. RESULTS: A total of 75 presumptive E. sakazakii and 23 non-target strains were analysed by using chromogenic media, alpha-glucosidase based PCR assay, and the VIT assay. For most presumptive E. sakazakii strains on the chromogenic media, the PCR and VIT assay confirmed the identification. However, for a number of presumptive E. sakazakii isolates from fruit powder, the alpha-glucosidase PCR and VIT assay did not correspond to the typical E. sakazakii colonies on DFI and ESIA. Further characterization by API32E identification, phylogenetic analysis of partial 16S rRNA sequences and ribotyping strongly suggested, that these strains did not belong to the species E. sakazakii. The newly developed alpha-glucosidase based PCR assay as well as the commercially available VIT Enterobacter sakazakii identification test showed an excellent correlation with the 16S rRNA data, and are thus well suited for identification of E. sakazakii. CONCLUSION: The results indicate that presumptive colonies on ESIA and DFI media need further species identification. Both evaluated molecular methods, the alpha-glucosidase PCR and the 16S RNA in situ hybridisation test (VIT), although based on completely different target regions and methodologies performed equally well in terms of specificity

    Damaged Neocortical Perineuronal Nets Due to Experimental Focal Cerebral Ischemia in Mice, Rats and Sheep

    Get PDF
    As part of the extracellular matrix (ECM), perineuronal nets (PNs) are polyanionic, chondroitin sulfate proteoglycan (CSPG)-rich coatings of certain neurons, known to be affected in various neural diseases. Although these structures are considered as important parts of the neurovascular unit (NVU), their role during evolution of acute ischemic stroke and subsequent tissue damage is poorly understood and only a few preclinical studies analyzed PNs after acute ischemic stroke. By employing three models of experimental focal cerebral ischemia, this study was focused on histopathological alterations of PNs and concomitant vascular, glial and neuronal changes according to the NVU concept. We analyzed brain tissues obtained 1 day after ischemia onset from: (a) mice after filament-based permanent middle cerebral artery occlusion (pMCAO); (b) rats subjected to thromboembolic MACO; and (c) sheep at 14 days after electrosurgically induced focal cerebral ischemia. Multiple fluorescence labeling was applied to explore simultaneous alterations of NVU and ECM. Serial mouse sections labeled with the net marker Wisteria floribunda agglutinin (WFA) displayed largely decomposed and nearly erased PNs in infarcted neocortical areas that were demarcated by up-regulated immunoreactivity for vascular collagen IV (Coll IV). Subsequent semi-quantitative analyses in mice confirmed significantly decreased WFA-staining along the ischemic border zone and a relative decrease in the directly ischemia-affected neocortex. Triple fluorescence labeling throughout the three animal models revealed up-regulated Coll IV and decomposed PNs accompanied by activated astroglia and altered immunoreactivity for parvalbumin, a calcium-binding protein in fast-firing GABAergic neurons which are predominantly surrounded by neocortical PNs. Furthermore, ischemic neocortical areas in rodents simultaneously displayed less intense staining of WFA, aggrecan, the net components neurocan, versican and the cartilage link protein (CRTL) as well as markers in net-bearing neurons such as the potassium channel subunit Kv3.1b and neuronal nuclei (NeuN). In summary, theconsistent observations based on three different stroke models confirmed that PNs are highly sensitive constituents of the NVU along with impaired associated GABAergic neurons. These results suggest that PNs could be promising targets of future stroke treatment, and further studies should address their reorganization and plasticity in both stabilizing the acute stroke as well as supportive effects during the chronic phase of stroke

    Impaired Neurofilament Integrity and Neuronal Morphology in Different Models of Focal Cerebral Ischemia and Human Stroke Tissue

    Get PDF
    As part of the neuronal cytoskeleton, neurofilaments are involved in maintaining cellular integrity. In the setting of ischemic stroke, the affection of the neurofilament network is considered to mediate the transition towards long-lasting tissue damage. Although peripheral levels of distinct neurofilament subunits are shown to correlate with the clinically observed severity of cerebral ischemia, neurofilaments have so far not been considered for neuroprotective approaches. Therefore, the present study systematically addresses ischemia-induced alterations of the neurofilament light (NF-L), medium (NF-M), and heavy (NF-H) subunits as well as of α-internexin (INA). For this purpose, we applied a multi-parametric approach including immunofluorescence labeling, western blotting, qRT-PCR and electron microscopy. Analyses comprised ischemia-affected tissue from three stroke models of middle cerebral artery occlusion (MCAO), including approaches of filament-based MCAO in mice, thromboembolic MCAO in rats, and electrosurgical MCAO in sheep, as well as human autoptic stroke tissue. As indicated by altered immunosignals, impairment of neurofilament subunits was consistently observed throughout the applied stroke models and in human tissue. Thereby, altered NF-L immunoreactivity was also found to reach penumbral areas, while protein analysis revealed consistent reductions for NF-L and INA in the ischemia-affected neocortex in mice. At the mRNA level, the ischemic neocortex and striatum exhibited reduced expressions of NF-L- and NF-H-associated genes, whereas an upregulation for Ina appeared in the striatum. Further, multiple fluorescence labeling of neurofilament proteins revealed spheroid and bead-like structural alterations in human and rodent tissue, correlating with a cellular edema and lost cytoskeletal order at the ultrastructural level. Thus, the consistent ischemia-induced affection of neurofilament subunits in animals and human tissue, as well as the involvement of potentially salvageable tissue qualify neurofilaments as promising targets for neuroprotective strategies. During ischemia formation, such approaches may focus on the maintenance of neurofilament integrity, and appear applicable as co-treatment to modern recanalizing strategies

    Impaired Neurofilament Integrity and Neuronal Morphology in Different Models of Focal Cerebral Ischemia and Human Stroke Tissue

    Get PDF
    As part of the neuronal cytoskeleton, neurofilaments are involved in maintaining cellular integrity. In the setting of ischemic stroke, the affection of the neurofilament network is considered to mediate the transition towards long-lasting tissue damage. Although peripheral levels of distinct neurofilament subunits are shown to correlate with the clinically observed severity of cerebral ischemia, neurofilaments have so far not been considered for neuroprotective approaches. Therefore, the present study systematically addresses ischemia-induced alterations of the neurofilament light (NF-L), medium (NF-M), and heavy (NF-H) subunits as well as of u-internexin (INA). For this purpose, we applied a multi-parametric approach including immunofluorescence labeling, western blotting, qRT-PCR and electron microscopy. Analyses comprised ischemia-affected tissue from three stroke models of middle cerebral artery occlusion (MCAO), including approaches of filament-based MCAO in mice, thromboembolic MCAO in rats, and electrosurgical MCAO in sheep, as well as human autoptic stroke tissue. As indicated by altered immunosignals, impairment of neurofilament subunits was consistently observed throughout the applied stroke models and in human tissue. Thereby, altered NF-L immunoreactivity was also found to reach penumbral areas, while protein analysis revealed consistent reductions for NF-L and INA in the ischemia-affected neocortex in mice. At the mRNA level, the ischemic neocortex and striatum exhibited reduced expressions of NF-L- and NF-H-associated genes, whereas an upregulation for Ina appeared in the striatum. Further, multiple fluorescence labeling of neurofilament proteins revealed spheroid and bead-like structural alterations in human and rodent tissue, correlating with a cellular edema and lost cytoskeletal order at the ultrastructural level. Thus, the consistent ischemia-induced affection of neurofilament subunits in animals and human tissue, as well as the involvement of potentially salvageable tissue qualify neurofilaments as promising targets for neuroprotective strategies. During ischemia formation, such approaches may focus on the maintenance of neurofilament integrity, and appear applicable as co-treatment to modern recanalizing strategies

    Selective intra-carotid blood cooling in acute ischemic stroke : a safety and feasibility study in an ovine stroke model

    Get PDF
    Selective therapeutic hypothermia (TH) showed promising preclinical results as a neuroprotective strategy in acute ischemic stroke. We aimed to assess safety and feasibility of an intracarotid cooling catheter conceived for fast and selective brain cooling during endovascular thrombectomy in an ovine stroke model. Transient middle cerebral artery occlusion (MCAO, 3 h) was performed in 20 sheep. In the hypothermia group (n = 10), selective TH was initiated 20 minutes before recanalization, and was maintained for another 3 h. In the normothermia control group (n = 10), a standard 8 French catheter was used instead. Primary endpoints were intranasal cooling performance (feasibility) plus vessel patency assessed by digital subtraction angiography and carotid artery wall integrity (histopathology, both safety). Secondary endpoints were neurological outcome and infarct volumes. Computed tomography perfusion demonstrated MCA territory hypoperfusion during MCAO in both groups. Intranasal temperature decreased by 1.1 °C/3.1 °C after 10/60 minutes in the TH group and 0.3 °C/0.4 °C in the normothermia group (p < 0.001). Carotid artery and branching vessel patency as well as carotid wall integrity was indifferent between groups. Infarct volumes (p = 0.74) and neurological outcome (p = 0.82) were similar in both groups. Selective TH was feasible and safe. However, a larger number of subjects might be required to demonstrate efficacy

    Exact input-output linearization for a trailer steering controller

    No full text
    In this paper the authors present how the exact input-output linearization technique can be used for a nonlinear trailer steering controller in order to improve the maneuverability of heavy commercial vehicles with semi-trailers. In order to overcome modeling uncertainties and to increase the robustness, the exact input-output linearization is extended with a sliding mode control approach. This paper focuses on the applicability of the exact input-output linearization. It is analyzed, whether the relative degree is well-defined with respect to the variation of typical vehicle parameters

    Imaging micropolarimeter for use under microgravity-conditions

    No full text
    corecore