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2 Abstract

3 Selective therapeutic hypothermia (TH) showed promising preclinical results as a 

4 neuroprotective strategy in acute ischemic stroke. We aimed to assess safety and feasibility of 

5 an intracarotid cooling catheter conceived for fast and selective brain cooling during 

6 endovascular thrombectomy in an ovine stroke model.

7 Transient middle cerebral artery occlusion (MCAO, 3h) was performed in 20 sheep. In the 

8 hypothermia group (n=10), selective TH was initiated 20 minutes before recanalization, and 

9 was maintained for another 3h. In the normothermia control group (n=10), a standard 8 French 

10 catheter was used instead. Primary endpoints were intranasal cooling performance (feasibility) 

11 plus vessel patency assessed by digital subtraction angiography and carotid artery wall integrity 

12 (histopathology, both safety). Secondary endpoints were neurological outcome and infarct 

13 volumes. 

14 Computed tomography perfusion demonstrated MCA territory hypoperfusion during 

15 MCAO in both groups. Intranasal temperature decreased by 1.1°C/3.1°C after 10/60 minutes in 

16 the TH group and 0.3°C/0.4°C in the normothermia group (p<0.001). Carotid artery and 

17 branching vessel patency as well as carotid wall integrity was indifferent between groups. 

18 Infarct volumes (p=0.74) and neurological outcome (p=0.82) were similar in both groups.

19 Selective TH was feasible and safe. However, a larger number of subjects might be required 

20 to demonstrate efficacy.

21

22 Key words: acute ischemic stroke, catheter, endovascular stroke therapy, hypothermia, 

23 selective brain cooling 
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24 Introduction

25 Therapeutic hypothermia (TH) has proved neuroprotective effects in hypoxic-ischemic 

26 brain damage related to cardiac arrest.1 Moreover, randomized clinical trials have shown 

27 improved functional outcome and reduced mortality after successful resuscitation when TH was 

28 applied systemically using extracorporal or intravenous blood cooling techniques. These 

29 techniques became therapeutic standards for cardiac arrest almost two decades ago.2,3 

30 In acute ischemic stroke (AIS) caused by cerebral large vessel occlusion (LVO), TH 

31 might provide neuroprotection4–6 with promising effects including lesion size reduction and 

32 preservation of white matter integrity being shown in several rodent models using brain cooling 

33 techniques.7–10 Early clinical studies indicated feasibility and safety of systemic TH induced by 

34 intravenous and extracorporeal cooling devices.11,12 However, a recent multicenter, randomized 

35 clinical trial designed to assess efficacy of an intravenous cooling device (ICTusS 2 trial) in 

36 patients eligible for intravenous thrombolysis (IVT) was stopped prematurely, reporting 

37 increased systemic complications such as pneumonia.13 It was also postulated that effective 

38 cooling of ischemic brain tissue may be impaired by the LVO itself.14 

39 Concurrently, the advent of mechanical thrombectomy (MT) revolutionized the treatment 

40 of patients with LVO, replaced IVT as a primary treatment and finally raised the interest for 

41 new treatment options to synergistically integrate neuroprotective effects such as mediated by 

42 hypothermia in the frame of a MT procedure.15 In particular, a major pathophysiological 

43 element related to IVT or MT is reperfusion damage emerging immediately after blood flow 

44 restoration16, so systemic whole-body cooling may be too slow and hence too late for an 

45 effective counteraction after recanalization. Thus, rapid and early endovascular selective brain 

46 cooling combined with MT may be an appealing alternative TH approach for neuroprotection 

47 in LVO stroke.4,6,17,18 A recent study including 113 LVO patients demonstrated safety of a 

48 combined therapy applying a standard MT plus a short (15 min) intra-arterial (‘selective’) cold 

49 saline infusion versus MT alone.6 Moreover, a trend towards improved functional outcome was 
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50 observed in the selective TH group. However, the duration and impact of direct intra-arterial 

51 cold saline infusion may be limited by the applicable saline volume.8 

52 We have recently reported preliminary in vitro and in vivo assessment of a closed-loop 

53 cooling catheter (CLCC) system for intra-carotid blood cooling17,19,20 conceived to provide 

54 swift and selective TH in combination with MT for the treatment of LVO stroke. Herein, we 

55 aimed to assess feasibility and safety of the CLCC system in an ovine stroke model simulating 

56 MT by transient middle cerebral artery occlusion (MCAO). The study was designed as an 

57 exploratory approach with partially blinded endpoint assessment.

58

59 Material and Methods

60 Study design and ethics

61 The study was performed according to the German animal protection law and the animal 

62 care and welfare guidelines of the European Community (2010/63/EU). Animal experiments 

63 were approved by the local ethics committee (Regierungspräsidium Freiburg, Germany; #39-

64 9185.81/G-15/38). ARRIVE guidelines were applied. 

65 Primary endpoints comprised intranasal temperature decrease of 2°C within the first 30 

66 minutes of cooling in the hypothermia group (feasibility), and carotid artery injury in 

67 hypothermia compared to normothermia group, assessed on histological findings and 

68 angiographically (safety). Secondary endpoints were infarct volumes assessed by magnetic 

69 resonance imaging (MRI) and functional outcome (efficacy). 

70 The study was designed to reveal an effect size of at least 1.33 regarding primary endpoints 

71 at 80% power and p<0.05. This required a minimum sample size of n=10 per group. Treatment 

72 allocation of animals into hypothermia and normothermia  groups had to be done in a non-

73 randomized order due to delaying technical issues which impeded the use of the CLCC from 

74 the beginning of the study start and concomitant, temporally restricted availability of animals. 

75 Thus, the normothermia group had to be performed first. We accepted this limitation due to the 
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76 exploratory nature of the study. Evaluators of primary and secondary endpoints were blinded 

77 to the treatment allocation. Figure 1(a) provides an overview on the study design.

78

79 Animals

80 The study involved twenty merino half breed ewes (age 10-20 months; weight 45-76 kg). 

81 Animals were kept in the Center for Experimental Models and Transgenic Service of the 

82 University of Freiburg under following conditions: group housing on straw bedding, daily 

83 outside grazing, water and hay ad libitum, plus concentrated feed pellets as reward and to foster 

84 human familiarization. Blood test and parasitological examination were conducted one day 

85 before surgery. Animals were dewormed when recruited into the study population and 

86 deworming was repeated at regular intervals as well as in case of individual parasitological 

87 findings. Sheep were physically examined for 30 days after the procedure, assessing body 

88 weight, respiratory and pulse rates, and body temperature. The Body Condition Score (BCS) 

89 was also applied as reported elsewhere.21

90

91 Anesthesia

92 Anesthesia was initiated by intramuscular injection of midazolam (0.5 mg/kg bodyweight 

93 (BW)) and ketamine hydrochloride (20 mg/kg BW), and was deepened by intravenous propofol 

94 administration (1-2 mg/kg BW). After endotracheal intubation, 12-15 breaths/min were 

95 provided by a volume-controlled ventilator at a 10-15 mL/kg BW tidal volume and 5-mbar 

96 positive end-expiratory pressure. Settings were adjusted to normalize oxygen and carbon 

97 dioxide tension, and pH values. Anesthesia for surgical and endovascular procedures was 

98 maintained by isoflurane in oxygen/air (FiO2 >0.4), intravenous ketamine (10 mg/kg BW/h) 

99 and fentanyl (5-10 μg/kg BW/h) administration. For computed tomography (CT) perfusion and 

100 brain MRI examinations, anesthesia was maintained by intravenous propofol administration at 

101 15-18 mg/kg/h. 
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102 Fluid homeostasis was maintained by intravenous infusion of Ringer solution (10 mg/kg 

103 BW/h). Infusion rates were increased in case of large fluid losses for instance by massive 

104 salivation (a common but benign phenomenon in anesthetized sheep), or to increase blood 

105 pressure non-pharmacologically. An intraoperative antibiotic treatment with ceftriaxone (2 g 

106 i.v.) was applied. Postsurgical antibiotic (dihydrostreptomycin sulfate 12.9 mg/kg, 

107 benzylpenicillin- procaine 8 mg/kg) and analgesic (carprofen 4 mg/kg) treatment was 

108 performed for at least 3 days following surgery.

109

110 Physiological and temperature monitoring

111 Physiological parameters (arterial oxygenation, heart rate and mean arterial blood pressure) 

112 were recorded within predefined intervals during the surgical procedure (30 to 0 minutes before 

113 cooling, as well as 5-30, 35-60, 65-90, 95-120, 125-150, 155-180 and 185-210 min post 

114 initiation of cooling). In order to avoid any interference of measurements with surgical 

115 procedures, exact time points of measurement were allowed to slightly differ between animals. 

116 Arterial blood gas analysis was performed at predefined time points (95 and 20 min before 

117 MCA recanalization, as well as 20, 50, 70, 115 and 150 min thereafter). 

118 Body (rectal) and head (deep intranasal, right nostril) temperatures were recorded non-

119 invasively and continuously (10-sec intervals) using temperature probes (MP00992; Draeger 

120 Medical GmbH, Lübeck, Germany). In a previously published analysis of intra-carotid blood 

121 cooling in sheep20, ipsilateral nasal temperature was shown to correlate well with brain 

122 temperatures of the cooled hemisphere, exhibiting a stable mean gradient over the whole 

123 cooling period with nasal temperatures being about 0.4 to 0.5°C higher than brain temperatures. 

124 This gradient is likely related to mixing of cooled and non-cooled blood from bilateral external 

125 carotid artery supply to the nasal tissue. Thus, we decided to skip invasive brain temperature 

126 measurement in order to avoid potential sequelae from potential brain trauma, and used 

127 ipsilateral nasal measurements as a surrogate for brain temperature in the cooled hemisphere 
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128 instead. Temperature drops were calculated for both ipsilateral nasal and rectal measurements 

129 by subtracting each procedural measurement from an individual baseline temperature that was 

130 time-averaged over a 30 min interval prior to start of the cooling procedure for each animal and 

131 probe.

132

133 Middle cerebral artery occlusion

134 Transient MCAO by surgical clip application including confirmation of MCAO by CT 

135 perfusion imaging was performed as described previously.22 In brief, sheep were positioned in 

136 supine position with the head turned to the left side. After a 5-7 cm long skin incision along the 

137 right superior temporal fossa, the fascia of the temporal muscle was opened and the muscle was 

138 stripped away laterally. The coronoid process was lateralized and craniectomy over the junction 

139 was performed using an electric high-speed drill (microspeed, Aesculap, Tuttlingen, Germany) 

140 to access the floor of the middle cranial fossa. After opening the dura and using an optic 

141 microscope (Möller-Wedel, Wedel, Germany), the distal branches of the MCA were followed 

142 proximally until the optic nerve and the terminal internal carotid artery (ICA) had been 

143 identified. An aneurysm clip (Yasargil transient titanium clip, Aesculap) was attached to the 

144 proximal MCA for transient occlusion and was removed after 3h. Directly after vessel 

145 occlusion, a transient wound closure was performed and animals were transferred to CT 

146 perfusion imaging for MCAO confirmation.22 Thereafter, sheep were transferred back to the 

147 operating room for the endovascular procedure (see below) and clip removal followed by 

148 permanent cranial wound closure. An intravenous heparin bolus (70 IU/kg BW) was 

149 administered after clip removal and wound closure.

150

151 [Figure 1 around here]

152

153 Endovascular procedure
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154 For endovascular access, the right femoral artery was punctured and a 12 French (F) sheath 

155 was introduced. In the hypothermia group, a CLCC was inserted into the right common carotid 

156 artery (CCA) by use of a coaxial 125 cm 5F vertebral or Simmons 2-shaped inner catheter for 

157 vessel selection. In the normothermia group, a 90 cm long 8F sheath (Flexor® Shuttle® Guiding 

158 Sheath, Cook Medical, Ireland) was inserted into the right CCA instead to simulate a standard 

159 MT procedure and potentially related vessel wall trauma. Outer diameter was similar in both 

160 CLCC and 8F sheath. A mono-planar C-arm angiography system (XA BV300, Philips Health 

161 Systems, Hamburg, Germany) was used to perform selective digital subtraction angiography 

162 (DSA) with contrast agent administration (Solutrast 300, Bracco Imaging Deutschland, 

163 Konstanz, Germany) into the right CCA. DSA imaging (anterior-posterior and lateral views) 

164 for assessment of vessel patency, CCA vasospasm and potential embolic occlusion was 

165 performed first during MCAO (prior to initiation of cooling), and after 90 min of cooling (70 

166 min after recanalization by clip removal), and finally after 180 min of cooling prior to catheter 

167 removal. 

168

169 Closed-loop cooling catheter

170 CLCCs (Figure 1(b)) were developed, manufactured and provided by the company Acandis 

171 GmbH (Pforzheim, Germany). The distal end of the CLCC consists of four balloons with a 

172 diameter of 4 mm and a length of 20 mm each, spaced from each other by 4 mm, resulting in a 

173 total length of 92 mm.17,19,20 Two catheter lumina with an inner diameter of around 1 mm each 

174 enable a continuous closed-loop flow of cold saline into and out of the balloons, respectively. 

175 The catheter also features a central lumen compatible with a 6F catheter for MT procedure 

176 during cooling, resulting in a 3.4 mm outer diameter (corresponding to an 11F catheter or to an 

177 8F sheath). The saline solution was cooled externally using a compression chiller (Ministat 125; 

178 Peter Huber Kältemaschinenbau, Offenburg, Germany) to provide a temperature of around 5°C 

179 at the catheter entrance, measured with a precision fine-wire thermocouple (5TC-KK-KI-24-2 
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180 m; Omega Engineering, Stamford, Connecticut, USA). A further thermocouple was used to 

181 measure the coolant temperature at the catheter outlet (data not shown). Flow was maintained 

182 by a roller pump (Behrotest PLP 220 with a PPH 303 pump head; Behr Labor-Technik, 

183 Düsseldorf, Germany) and measured by ultrasonic flow meters (M-2111; Malema Engineering, 

184 Boca Raton, Florida, USA). Coolant pressure was measured proximal to the catheter inlet 

185 (HPSA-B10DVAB-020-G; Althen, Kelkheim) to assure a maximal value of around 3 bar during 

186 the whole procedure, according to catheter and pump specifications. Custom-made, isolated, 

187 double wall PVD tubes allowed for coolant flow from the chiller to the pump and from the 

188 pump to the catheter. A further tube with integrated temperature and coolant flow probes 

189 enabled coolant flow-back from the catheter outlet to the chiller.

190

191 Selective hypothermia

192 In the hypothermia group, cooling with the CLCC was initiated 20 min prior to MCA 

193 recanalization by clip removal (initial coolant flow rate 100-120 ml/min; maximal inlet pressure 

194 3 bar). Cooling was maintained for 180 min (or 160 minutes after MCA recanalization). Coolant 

195 flow rates were reduced towards the end of the cooling period in steps of 20 ml/min in order to 

196 maintain a maximal nasal temperature drop of 4°C and thus prevent heavy shivering during the 

197 post-operative period, which may compromise a controlled rewarming of the animals.

198 The CLCC was removed after 3 hours, the femoral artery was immediately ligated and the 

199 skin wound was closed. Procedures in the normothermia group were identical except for the 

200 long sheath being inserted into the right CCA instead of the CLCC, and omission of cooling.

201

202 Carotid blood flow measurements

203 Carotid blood flow velocity within the right CCA was measured by experienced vascular 

204 neurologists (W.-D.N., C.S.) at mid cervical level using color Doppler ultrasound (Sonosite PX, 

205 FUJIFILM Sonosite, Amsterdam, Netherlands). Measurements were obtained first before 
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206 CLCC placement during MCAO, second after MCAO during cooling distal to the CLCC tip, 

207 and third after removal of the CLCC. Mean flow velocities were calculated from peak systolic 

208 and end diastolic flow velocity measurements.

209

210 Animal imaging: CT perfusion and MRI

211 CT perfusion was performed on a 16-slice CT scanner (Somatom Sensation 16, Siemens) 

212 immediately after surgical clip placement for confirmation of correct MCAO as previously 

213 described.22 Standard perfusion image maps (CBV, CBF, and Tmax) were processed using a 

214 dedicated commercial software package (SyngoVia, Siemens, Erlangen, Germany). Images 

215 were rated by an experienced neuroradiologist (S.M.) for the presence and degree of MCA 

216 territory hypoperfusion using the following semiquantitative score as previously reported22 with 

217 0: no hypoperfusion visible on Tmax/CBF/CBV, 1: hypoperfusion visible on Tmax only, 2:  

218 hypoperfusion visible on Tmax and partially visible on CBF/CBV, 3: hypoperfusion visible on 

219 Tmax/CBF and partially on CBV.

220 MRI was performed on a 3T MRI Scanner (Trio, Siemens, Erlangen, Germany) using a 

221 combined 12-channel head/neck coil on day 2 and day 30 after MCAO in each animal (see 

222 Supplementary Table 1 for details). Volumetric analyses of infarct (coronal DWI images, 

223 correlated with ADC maps) and edema (infarct plus surrounding vasogenic edema on coronal 

224 T2w images) were performed using manual segmentations on the medical imaging platform 

225 NORA (www.nora-imaging.com). From these segmentations, the total lesion volumes were 

226 automatically calculated (number of voxels in the segmentation x voxel size). Representative 

227 images are shown in Supplementary Figure 1.

228

229 Neurological assessment

230 All animals underwent neurological examination by an experienced veterinary physician 

231 (A.M.H., J.H.) pre-procedure and on days 1-5, 7, 10, 15, 20, 25, and 30 post MCAO using a 
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232 modified ovine neurological score for sheep (Supplementary Table 2) based on a previously 

233 reported one.23

234

235 Histology of carotid arteries

236 Sheep were sacrificed in deep anesthesia by an intravenous potassium chloride overdose 

237 following the MRT examination on day 30. Death by cardiac arrest was certified by an 

238 independent veterinarian. Long-segmental specimen (length, 15-21.5 cm) of bilateral CCAs 

239 were surgically removed and fixed in buffered 3.5% formaldehyde-solution (Otto Fischar 

240 GmbH & Co. KG, Saarbrücken, Germany) for histopathological evaluation. 40 samples per 

241 vessel were taken, and 4 samples were embedded together. Vessel samples were marked from 

242 cranial to caudal in order to allow later orientation at the incision. Of each embedding two slices 

243 of 2 µm were cut using a microtome (Leica RM2255®; Leica, Wetzlar, Germany). The slices 

244 were stained for hematoxylin-eosin (HE) and Verhoeff’s van Gieson (EVG) by routine staining 

245 protocols of the Pathological Institute, University Hospital Freiburg. The following 

246 histopathological parameters accounting for vessel wall integrity were evaluated by two 

247 experienced pathologists (L.L., S.K.): thickening and inflammation of the tunica intima, 

248 thickening and cell abundance of the tunica media, fragmentation of the elastic fibers, presence 

249 of luminal or wall-adherent thrombus, fibrinoleukocytic scab, and presence of dissection. 

250 Samples were initially assessed using light microscopy (Leica DM2500® equipped with 2.5x 

251 objective). Only changes visible under these conditions were included in the semi-quantitative 

252 scoring analysis which was performed at 100x magnification. The extent of the vessel 

253 alterations was graded in a four-tier scale (0: no changes, 1: minimal changes; 2: moderate 

254 changes and 3: severe changes) as demonstrated in Supplementary Figure 2.

255

256 Statistical Analysis
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257 All statistical analyses were planned and performed by a highly experienced senior 

258 biostatistician (G.I.). Descriptive data are presented as mean and standard deviations (SD) for 

259 normally distributed, continuous variables or median and interquartile ranges (IQR) for all other 

260 continuous variables, respectively. Frequency distributions are provided for binary or 

261 categorical variables. Continuous variables were checked for normality of data distribution 

262 using Shapiro-Wilk tests. Group comparisons were then performed with t-tests for normally 

263 distributed variables and Wilcoxon two-sample tests in case of non-normally distributed 

264 variables. Continuity adjusted chi-square tests were used for group comparisons of binary 

265 variables, and the Mantel-Haenszel chi-square test was applied for ordered categorical 

266 variables. 

267 Since continuous temperature recording generated a large amount of individual data points, 

268 temperature course was analyzed in 5 min intervals. For temporal comparison of the 

269 neurological deficits, the area under the curve (AUC) from daily assessments was calculated 

270 and compared between groups. Spearman correlation coefficients between hypoperfusion score 

271 on CT and secondary outcomes (animal neuroscore, MRI infarct/edema volumes, and infarct 

272 size on histopathology) were calculated. 

273 Statistical analysis was performed using SAS version 9.2 (SAS Institute Inc, Cary, NC, 

274 USA). Reported p-values are not adjusted for multiple testing and are therefore considered as 

275 descriptive information. To account for multiple testing time points, Bonferroni-type 

276 corrections are not useful as the measurements are highly dependent. A hierarchical testing 

277 procedure is applied, i.e. tests are ordered according to the time sequence. Tests are performed 

278 in this order at a significance level of α=0.05. The procedure stops if a non-significant result is 

279 obtained, and no furthers tests are performed.24 

280
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281 Results

282

283 Physical and physiological parameters at baseline and during follow-up

284 Mean body weight was 68.8 kg (SD 5.5) in normothermic animals and 57.9 kg (10.0) in 

285 hypothermic animals at baseline (p<0.01), and 68.3 kg (5.2) versus 56.3 kg (8.9) at day 30 

286 follow-up (p<0.01), respectively. Results of pre-procedural blood and parasitological tests 

287 (Supplementary Table 3) showed a slightly higher presence of cestodes in the normothermia 

288 group (p<0.05), and higher blood bilirubin and fibrinogen levels in the hypothermia group 

289 (p<0.01) that, however, did not exceed the normal reference range. Assessment of physiological 

290 parameters (Supplementary Table 4) revealed that respiratory rates were significantly higher in 

291 the hypothermia group at days 1 to 4, and day 30 (p<0.05), but did not exceed the physiological 

292 reference range at any time. Body temperature did not differ significantly at any time despite 

293 for day 10 at which a minimal (0.3°C) difference was between the groups (p<0.05), again not 

294 violating physiological reference ranges. BCS was within normal limits in both groups but 

295 slightly higher in the normothermia group at days 1 to 3 (p<0.05).

296

297 Procedural physiological monitoring during selective cooling

298 Detailed intraprocedural physiological monitoring data is reported in Supplementary Table 

299 5. Mean arterial blood pressure progressively lowered in the hypothermia group from 100.1 

300 (SD 13.6) mmHg at baseline to 80.3 (11.7) mmHg at the end of the experiment versus 96.8 

301 (29.1) mmHg to 98.3 (30.2) mmHg in the normothermia group. Blood pressure was maintained 

302 in normal ranges non-pharmacologically what required higher infusion volumes in hypothermia 

303 animals (data not shown), and was significantly lower in that group between 95 and 150 min 

304 after hypothermia onset. Although not reaching statistically significance at any time point, mean 

305 heart rate was lower in the hypothermia during cooling, sometimes dropping into mild 

306 bradycardia. Arterial oxygenation was normal and did not differ between groups. 
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307 Results of intraprocedural arterial blood gas analysis are provided in Supplementary Table 

308 6. Arterial pCO2 levels were elevated in the hypothermia group after cooling onset turning into 

309 mild hypercapnia (>47.0 mmHg, maximum 48.5 mmHg) towards the end of the measurement 

310 period (115 min and beyond). Blood oxygen was continuously elevated to non-physiological 

311 levels due to the FiO2 >0.4 maintained throughout the experiment. Of note, a number of other 

312 parameters were intermittingly or permanently different from those in the hypothermia group, 

313 but did not violate physiological ranges in most cases. Sodium, calcium, potassium, lactate, and 

314 hematocrit fell below normal ranges in both groups, most likely due to the continuous fluid 

315 supply which tended to be higher in the hypothermia group to counter mild hypotension. 

316 Chloride was continuously elevated in the hypothermia group (p<0.05), but remained within 

317 the physiological range.

318

319 Feasibility endpoint: intra-carotid blood cooling effect

320 Catheter navigation to CCA using CLCC was feasible in all animals. Immediately after 

321 initiation of selective hypothermia, ipsilateral nasal temperature as a surrogate for hemispheric 

322 brain temperature started to decline and plateaued at approximately -4°C due to downregulation 

323 of CLCC cooling performance as described above (Figure 2(a)). Temperature differences 

324 became statistically significantly lower no later than 10 min after cooling onset (Table 1) 

325 compared to the normothermia group (p<0.01). The normothermia group showed a mild nasal 

326 (max. -0.7°C) and systemic temperature drop (max. -0.53°C) observed at 180 min, likely due 

327 to prolonged general anesthesia and loss of active temperature regulation. In the hypothermia 

328 group, ipsilateral nasal temperatures were significantly lower by 0.49 to 0.79°C (p<0.01) 

329 compared to systemic rectal temperatures during the initial 2 hours of cooling indicating, a 

330 selective cranial cooling effect (Supplementary Table 7). In the later cooling and early 

331 postcooling period, these differences levelled out due to active reduction of CLCC cooling rates 

332 (Figure 2(b)).
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333

334 [Table 1 and Figure 2 around here]

335

336 Safety endpoints: CCA ultrasound and angiography, and histological analysis of carotid 

337 arteries

338 A moderate increase in CCA mean blood flow velocity compared to the baseline 

339 measurement was observed by Doppler ultrasound after removal of the CLCC (hypothermia) 

340 and the 8F sheath controls, respectively. There were no statistically significant differences 

341 between the groups, although a trend for higher flow velocities after MCAO (p=0.06) and 

342 CLCC/sheath removal (p=0.08; Table 2) was seen in the hypothermia group. On DSA, only 

343 mild CCA vasospasm occurred in 10-20% of cases after catheter insertion without statistically 

344 significant differences between both groups (p=1.0; Table 2). Major thrombus or vessel 

345 occlusion was not observed. Peripheral occlusions in superficial temporal CCA branches likely 

346 related to the surgical access for MCAO and were seen in both groups (p=0.37-1.0; Table 2). 

347 Post-mortem histological analysis of CCA specimens did not reveal evidence for decreased 

348 vessel wall integrity in the hypothermia versus the normothermia group (Table 3, 

349 Supplementary Figure 3). Moreover, no differences were observed between treated and non-

350 treated CCAs in the hypothermia group.

351

352 [Tables 2 and 3 plus Supplementary Figure 3 around here]

353

354 Secondary endpoints: MCAO imaging, MRI of infarcts, and neurological outcome

355 Analysis of CT perfusion after MCAO revealed that the mean extent of MCA territory 

356 hypoperfusion was lower in the normothermia group, although without statistical significance 

357 (p=0.54; Table 2). 
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358 Temporal evolution of MCA infarcts by MRI showed no difference in volumes of early 

359 infarct and edema (T2) on day 2, as well as of chronic infarct on day 30 (T2) between both 

360 groups (p=0.56-0.74; Table 4 and Figure 3). All MCA vessels remained recanalized on TOF 

361 MRA at both MRI measurements.

362 A moderate correlation between the extent of MCA territory hypoperfusion during 

363 transient MCAO (hypoperfusion score 0-3) and the resulting MRI infarct (correlation 

364 coefficient, 0.58; p<0.01) and edema (correlation coefficient, 0.56; p<0.05) volumes on day 2 

365 was observed in all animals irrespective of the mode of treatment. 

366

367 [Table 4 and Figure 3 around here]

368

369 The course of neurological deficits within 30 days post MCAO showed no statistically 

370 significant difference between hypothermic and normothermic animals (p=0.82, Table 4), 

371 although a lower area under the curve AUC was seen in hypothermia animals. An additional 

372 subgroup analysis of animals with severe MCA territory hypoperfusion (n=8 and n=5 in 

373 hypothermia and normothermia groups, respectively) did not reveal statistically significant 

374 differences in functional outcome (neuroscore) or MRI edema and infarct volumes (p=0.47-

375 0.76; Table 4).

376
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377 Discussion

378 TH is considered a promising approach for neuroprotection in the treatment of AIS. 

379 However, intravenous systemic cooling techniques being effective for cardiac arrest showed no 

380 benefit but an increased risk of pneumonia in the cooling arm in a prematurely stopped 

381 randomized multicenter trial when combined with IVT for acute AIS treatment.13 In the era of 

382 MT being the primary treatment of AIS related to LVO, faster and more selective brain cooling 

383 via endovascular means combined with MT treatment becomes a valuable alternative strategy 

384 for TH.4,25,26,6 Fast and selective brain cooling may also counteract secondary injury during the 

385 critical phase of reperfusion. This is emphasized by the strong effect of local arterial infusion 

386 of cold saline into the ischemic region of the brain: in rat models of transient MCAO, the 

387 perfusion of cold saline into the internal carotid artery shortly before or after reperfusion 

388 resulted in decreased infarct volumes.27–29 However, these results may not be representative for 

389 AIS patients for three reasons. First, cooling of a larger brain volume might be required. Second, 

390 higher blood flow rates in the human CCA combined with proportionally lower coolant flow 

391 rates potentially reduce the cooling effect on brain parenchyma. Third, larger arterial wall 

392 surfaces may promote heat exchange with surrounding tissues, further limiting effective 

393 cooling. Large animal models better approximate the human situation than rodent models, 

394 warranting large animal experiments before moving on to clinical trials.

395 In two recent clinical studies with LVO stroke patients, selective TH was induced by direct 

396 infusion of 50 mL cold saline beyond an MCA-occluding thrombus. 30,6 Cold saline infusion 

397 was provided via a microcatheter for 5 minutes before MT was performed, followed by further 

398 10 minutes of cooled saline infusion into the carotid artery. In both studies, no brain temperature 

399 measurement was provided. Besides showing the safety of the method, data suggest a trend 

400 towards a smaller infarct volume and a favorable functional outcome in patients receiving MT 

401 plus hypothermia compared to controls receiving only MT. Though these differences were not 

402 significant, results are promising and seem to support the rationale of early local TH despite a 
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403 potential delay of vessel recanalization by MT.26,6 The CLCC tested in this study allows MT 

404 and simultaneous initiation of cooling directly at the site of the LVO. Pre-cooled blood would 

405 selectively reach the target brain tissue immediately after recanalization what may also mitigate 

406 local inflammatory processes.31

407 The cooling performance of the CLCC clearly matched the expectations: intranasal 

408 temperature dropped swiftly by 1.7°C within the first 20 minutes, i.e. prior to recanalization, 

409 compared to a systemic temperature reduction of 0.9°C, and further decreased to -2.1°C 

410 (systemic temperature -1.3°C) within the next 10 minutes. Given that the difference between 

411 measured nasal and brain temperature during cooling is about 0.4-0.5°C 20, an estimated brain 

412 temperature drop of 2.1-2.2°C occurred after 20 minutes. This reflects a reasonable time frame 

413 to navigate, reach the clot and successfully recanalize an occluded MCA in the clinical MT 

414 setting.

415 After one hour of cooling, intranasal temperature dropped by 3.1°C as compared to 

416 baseline. Systemic (rectal) temperature lacked behind until 2 hours of cooling, but body 

417 temperature in the hypothermia group finally dropped by more than 4°C at 150 min. This means 

418 that systemic side effects of cooling cannot be excluded when the CLCC is applied for longer 

419 periods. These findings warrant exploration of short-time selective brain cooling approaches to 

420 limit the systemic temperature drop and thus possible side effects. In this regard, a recent in 

421 vitro study demonstrated a positive effect of a shorter cooling duration on neuron activity.32 

422 Safety investigations did not reveal any inter-group differences that would indicate a 

423 detrimental impact of the CLCC. Of note, CCA mean flow velocity was higher prior to and 

424 after cooling although formal statistical significance was missed (p=0.06 and 0.08, 

425 respectively). The reasons are uncertain and it cannot be excluded that missing statistical 

426 significance is a matter of low statistical power. However, the fact that CCA flow velocity was 

427 already higher prior to the placement of CLCC may relate this difference to group 

428 inhomogeneity rather than to a direct effect from the cooling procedure. Another potential 
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429 explanation for the elevation of CCA flow velocities at the end of the cooling procedure could 

430 be a hypothermia-induced vasodilatation of large central arteries distal to the CLCC.20,33 

431 Histological assessments of the CCA did not indicate any tissue damage or other detrimental 

432 influence of the catheter or the treatment. Media thickening was even lowest in the hypothermia 

433 group although nominal statistical significance was missed (p=0.08). There were, however, 

434 significantly increased respiratory and heart rates in the hypothermia group in the first days 

435 after the cooling procedure. This can be considered uncritical, as the rates never violated 

436 physiological ranges. Moreover, heart rate was already higher in the hypothermia group prior 

437 to the procedure (p<0.05) in the hypothermia group whereas formal statistical significance was 

438 closely missed for a higher respiratory rate at that time point (p=0.07). Third, there were never 

439 any signs for infections or other indications of reduced wellbeing as compared to the 

440 normothermia group. Nevertheless, future studies should include similar safety endpoints to 

441 exclude the possibility that potential adverse effects with low effect size or frequency have been 

442 missed. In summary, this study revealed a favorable safety and feasibility profile of the assessed 

443 CLCC.

444 Secondary efficacy endpoints were not met in this study. The mean AUC of the neuroscore 

445 measurements was lower in the hypothermia group (n=10; 34), including those animals 

446 exhibiting severe hypoperfusion (n=8; 34), compared to the entire control group (n=10; 53) and 

447 to those control animals with severe hypoperfusion (n=5; 70). However, both comparisons did 

448 not reach statistical significance (p=0.83 for the entire groups; p=0.54 for animals with severe 

449 hypoperfusion), not indicating improved functional outcome. Lesion size on MRI at day 30 was 

450 also comparable between the groups. Potential reasons for not meeting the secondary endpoints 

451 are numerous. First, the inter-individual variability in both efficacy endpoints was high. Largest 

452 SD on lesion volumes as measured by MRI was 77.8%. Given the sample size (n=10), a mean 

453 intergroup-difference of 0.975 (i.e., a lesion size reduction by 97.5% in the hypothermia group) 

454 would be needed to reach statistical significance. This is highly unrealistic giving a 3 hour 
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455 MCAO in both groups. Large animals such as the sheep used in this study are outbred animals 

456 and inter-subject variability after stroke is higher than in inbred rodent strains due to individual 

457 differences in collateralization and blood vessel anatomy.22,34–36 This also increases inter-

458 subject variability in functional endpoints. This situation is similar to what is observed in human 

459 stroke patients and therefore more realistic than more standardized rodent models. On the other 

460 hand, the higher variability may also statistically obscure potential therapeutic effects of small 

461 to moderate size as could be expected in neuroprotection. Next to these general considerations, 

462 it cannot excluded that there was a “baseline disadvantage” to the hypothermia group. Although 

463 not reaching statistical significance, mean lesion and edema volumes were larger in the 

464 hypothermia group early after MCAO, and there were more animals with severe hypoperfusion 

465 (n=8 versus 5). The fact that we found a correlation between the extent of hypoperfusion during 

466 MCAO with edema and infarct volumes on MRI at day 2 irrespective of the treatment mode 

467 indicates an association between collateralization and final infarct in the ovine MCAO model 

468 in analogy to human MCA stroke. Hypothermia animals were also older and heavier than those 

469 in the normothermia group. Thus, there might have been a higher stroke burden in the 

470 hypothermia group underlining the need for well-powered efficacy studies using the ovine 

471 model.

472 Recently, the performance of an insulated cooling catheter was investigated in a canine 

473 MCAO stroke model, with a targeted 31–32°C brain temperature being reached within 25 min 

474 by cooled saline solution delivered directly into the ICA blood stream (flow rate of 22 mL/min). 

475 After transient MCAO for 45 min, infarct volume at 30 days was markedly reduced in treated 

476 animals compared to the control group, underpinning the neuroprotective effect of a fast and 

477 short cooling. Important differences in the study set-up could have contributed to better 

478 performance in terms of reduction of infarct size of the insulated catheter compared to the 

479 CLCC: first, the catheter was placed directly within the ICA, what is not possible in sheep due 

480 to the rete mirabile.23 The achieved intracerebral temperature drop despite the relatively low 
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481 coolant flow rate clearly indicates, from an energetic point of view, a limited blood flow within 

482 the ICA. Since the saline temperature was around 12°C and assuming an ipsilateral brain 

483 temperature of 31°C, an ICA flow rate of around 66 mL/min can be presumed, which is 

484 considerably lower than in human physiology (~250 mL/min)37 as well as in the ovine CCA 

485 (~780 mL/min, calculated from the mean velocity 39.9 cm/s and a CCA diameter of 6.7 mm 

486 measured by ultrasound19). Moreover, an absent systemic effect, which is related to the thermal 

487 energy amount “extracted” by the cooling system, indicates a small volume of the cooled brain 

488 compared to body mass. 

489 We noted a number of statistically significant intra-procedural blood gas and blood 

490 chemistry parameter differences in hypothermia versus control animals. Some of those 

491 including pCO2, chloride, tHB and MetHB did not relevantly violate physiological ranges in 

492 sheep, whereas others did. However, most of these individual differences may be considered 

493 uncritical in the light of multiple testing of parameters in a time-ordered sequence (e.g. 

494 repetitive blood tests during physiological monitoring) according to a hierarchical testing 

495 procedure algorithm for time-ordered data as used in our study (see also above).24 It is also 

496 unlikely that these differences were a TH consequence because the violation occurred in both 

497 groups. Constellations such as low hematocrit but only slightly reduced sodium, potassium plus 

498 slightly increased lactate indicate that the reason was the fluid supply to both groups by Ringer 

499 lactate throughout the procedure. Future studies should therefore rely on pharmacological blood 

500 pressure support during prolonged anesthesia. 

501 Our study has a number of limitations. The most obvious and severe one is the lacking 

502 randomization being required for logistical reasons. Although we could not avoid this 

503 limitation, it have subjected the study outcome to batch effects. We therefore conducted a 

504 number of post-hoc analyses revealing that groups were not statistically different from each 

505 other early with respect to important baseline parameters of the study, with even a minor mean 

506 value skew in favor of the control group. Thus, the omission of randomization may not have 
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507 biased the study in favor of the catheter-based selective brain cooling intervention, and we 

508 consider a false-positive result regarding the primary endpoints as unlikely. Moreover, the study 

509 was designed as an exploratory feasibility and safety investigation not necessarily requiring 

510 randomization. However, the lack of randomization clearly had consequences including the 

511 higher age and weight of the hypothermia animals what impressively underlines the need for 

512 proper randomization paradigms in future confirmative studies. A second limitation of our 

513 study is the relatively large inter-individual variability in key efficacy endpoints such as lesion 

514 volume and behavioral outcome. Downstream, efficacy-oriented research may therefore require 

515 the implementation of thorough measures to reduce this variability in order to detect a clinically 

516 meaningful benefit in the range of 10 to 20%.38 A third limitation may arise form ovine brain 

517 anatomy which differs from human in terms of mass, blood supply and surrounding tissues. All 

518 parameters potentially influence the intraparenchymal heat transfer processes. However, recent 

519 numerical simulations estimating temperature decrease in the human brain using the same 

520 CLCC revealed a similar temperature as reported in our study.39–41 

521

522 Conclusions 

523 In an ovine stroke model using transient MCAO, feasibility and safety of a novel closed-

524 loop cooling catheter for selective cerebral hypothermia was demonstrated. Reduction of infarct 

525 size and improved functional outcome could not be shown, presumably related to small sample 

526 size given a high stroke variability between animals. A larger number of subjects might be 

527 required to demonstrate efficacy.
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673 Figures legends

674

675 Figure 1: Overview on experimental design and concept of the closed-loop cooling catheter

676 (a) Overview on the experimental design. The upper timeline represents the overall study period 

677 while the lower timeline depicts the day of MCAO and cooling. ‘(X)’ indicates that deworming 

678 was performed in case the parasitological screening revealed positive results. (b) Concept of 

679 CLCC implanted in the common carotid artery of a sheep. The serial four-balloon array at the 

680 catheter tip and the three-inner-lumen construction of the catheter is schematically depicted.

681

682 Figure 2: Mean temperature drops and differences in the hypothermia versus the 

683 normothermia group

684 (a) Mean (95%-CI) temperature drops (∆T, °C) were calculated at 5-minute intervals 

685 throughout cooling (180 min) and post-cooling (30 min) periods. These are depicted for the 

686 rectal (●) and nasal (○) temperatures. (b) Mean (95%-CI) temperature differences between 

687 nasal and rectal temperature probes (∆T, °C) were calculated at 5-minute intervals throughout 

688 cooling (180 min) and post-cooling (30 min) periods. Blue symbols represent the hypothermia 

689 and red symbols represent the normothermia group.

690

691 Figure 3: CT perfusion images during MCAO and consecutive evolution of infarcts on 

692 MRI.

693 (a) Animal from the hypothermia group. In the hypothermic animal, CTP images reveal mild 

694 right MCA hypoperfusion (hypoperfusion score: 1) during MCAO, which is only visible due 

695 to a slight Tmax prolongation (arrow) without any changes on CBF (not shown) and CBV maps. 

696 The consecutive MCA infarct is small on DWI (arrow) and T2 MRI (arrow) at day 2 (DWI 

697 volume, 1.1 mL; T2 volume, 1.7 mL). (b) Animal from the normothermia group. In the 

698 normothermic animal, severe MCA territory hypoperfusion (hypoperfusion score: 3) is 
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699 disclosed with a lesion being visible on Tmax (arrow), CBF (not shown), and CBV maps (arrow). 

700 The resulting MCA territory infarct is large (DWI volume 9.2 mL, arrow). T2 MRI shows a 

701 surrounding edema (total volume 13.4 mL, arrow) and a space-occupying effect (midline shift, 

702 arrowhead). False color scales indicate Tmax values from 0 (purple) to 12 s (red) and CBV values 

703 from 0 mL/100g (purple) to 6 mL/100g (red).
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704 Table 1: Comparison of temperature drops during selective intra-carotid blood cooling

ipsilateral nasal temperature ∆T

°C (95%-CI) 

systemic rectal temperature ∆T 

°C (95%-CI)time 

point†
hypothermia 

group

normothermia 

group
p-value hypothermia group

normothermia 

group
p-value

5 min -0.72 (-0.97; -0.48) -0.32 (-0.70; 0.06) 0.0621 -0.29 (-0.35; -0.23) -0.09 (-0.15; -0.02) <0.0001*

10 min -1.13 (-1.41; -0.86) -0.30 (-0.64; 0.03) 0.0004* -0.53 (-0.62; -0.44) -0.11 (-0.18; -0.03) <0.0001*

20 min -1.71 (-1.97; -1.45) -0.23 (-0.42; -0.05) <0.0001* -0.93 (-1.05; -0.82) -0.13 (-0.22; -0.04) <0.0001*

30 min -2.06 (-2.33; -1.79) -0.15 (-0.27; -0.03) <0.0001* -1.31 (-1.43; -1.20) -0.12 (-0.22; -0.01) <0.0001*

60 min -3.09 (-3.49; -2.69) -0.35 (-0.57; -0.14) <0.0001* -2.33 (-2.53; -2.14) -0.20 (-0.33; -0.06) <0.0001*

90 min -3.74 (-4.08; -3.41) -0.40 (-0.60; -0.21) <0.0001* -3.16 (-3.35; -2.98) -0.31 (-0.49; -0.12) <0.0001*

120 min -4.15 (-4.39; -3.91) -0.62 (-0.91; -0.34) <0.0001* -3.74 (-3.92; -3.57) -0.42 (-0.63; -0.21) <0.0001*

150 min -4.22 (-4.36; -4.08) -0.67 (-0.94; -0.41) <0.0001* -4.02 (-4.21; -3.84) -0.50 (-0.74; -0.25) <0.0001*

180 min -4.10 (-4.21; -4.00) -0.70 (-1.01; -0.38) <0.0001* -4.09 (-4.30; -3.88) -0.53 (-0.82; -0.24) <0.0001*

705 †refers to time elapsed from procedural start (cooling or sheath insertion in normothermia group)

706 ∆T refers to mean (95%-CI) temperature drop calculated by subtraction of measured procedural temperature from temperature at baseline which 

707 was time-averaged over the last 30 min prior to procedural start per probe and animal. Asterisk (*) indicates significant difference between 

708 hypothermia and normothermia group.
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709 Table 2: Ultrasound and angiography of CCA, and brain CT perfusion

hypothermia group normothermia group p-value†

CCA ultrasound

mean flow velocity; cm/s, mean (SD)

  during MCAO, before CLCC insertion

  after MCAO, during cooling

  end of cooling, after CLCC removal

35.4 (8.6)

32.4 (9.8)

46.4 (16.0)

28.0 (7.7)

29.5 (9.2)

35.4 (8.9)

0.06

0.5

0.08

CCA angiography#

vasospasm, n (scores 0-2) / 

thromboembolism, n (scores 0-3)

  during MCAO, after CLCC insertion 

  after MCAO, during cooling

  end of cooling (180 min)

1 (score 1) / 4 (score 3)

1 (score 1) / 5 (score 3) 

1 (score 1) / 7 (score 3)

2 (score 1) / 5 (score 3)

1 (score 1) / 5 (score 3) 

1 (score 1) / 4 (score 3)

1.0 / 1.0

1.0 / 1.0

1.0 / 0.37

CT perfusion brain during MCAO

hypoperfusion score§, median (IQR)

mild hypoperfusion (0-1), n (%)

severe hypoperfusion (2-3), n (%)

2 (2-2)

2 (20%)

8 (80%)

1.5 (1-2)

5 (50%)

5 (50%)

0.5356

0.3484$

n/a

710 †p-values refer to comparisons by t-test for results of CCA ultrasound flow velocities, 

711 continuity-adjusted Chi-Square Test for angiography results/degree of hypoperfusion, and 

712 Wilcoxon test for hypoperfusion scores (on CT perfusion).

713 #DSA images were analyzed for CCA vasospasm and thromboembolism using semi-

714 quantitative scores: vasospasm score; 0: no vasospasm, 1: mild vasospasm, 2: severe 

715 vasospasm; thromboembolism score; 0: no thromboembolism, 1: mild thrombus without vessel 

716 occlusion, 2: severe thromboembolism with large artery occlusion, 3: external carotid artery 

717 occlusion related to surgical MCAO procedure. For both scores, frequencies (n) are provided 

718 solely for categories other than 0.

719 §hypoperfusion score is defined for rating of MCA territory: 0: no hypoperfusion visible on 

720 Tmax/CBF/CBV, 1: hypoperfusion visible on Tmax only, 2: hypoperfusion visible on Tmax and 

721 partially visible on CBF/CBV, 3: hypoperfusion visible on Tmax/CBF and partially on CBV.

722 $p-value refers to a difference in the categorized hypoperfusion scores: mild (0-1) versus severe 

723 (2-3) hypoperfusion between both groups.
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724 Table 3: Histopathological findings of carotid artery specimen

hypothermia group normothermia group
comparisons

p-value†

histopathological

parameter
treated 

CCA

non-

treated 

CCA

treated 

CCA

non-

treated

CCA

hypothermia 

versus 

normothermia

(treated CCA) 

treated 

versus non-

treated CCA

(hypothermia 

Group)

clot, wall-adherent 0 / 10 0 / 10 0 / 10 0 / 10 1.0 1.0

fibrinoleukocytic 

scab
0 / 10 0 / 10 1 / 10 2 / 10 1.0 1.0

luminal thrombus 7 / 10 7 / 10 4 / 10 7 / 10 0.369 1.0

dissection 0 / 10 0 / 10 1 / 10 0 / 10 0.501 1.0

intimal thickening 7 / 10 7 / 10 7 / 10 8 / 10 1.0 1.0

intimal inflammation 0 / 10 0 / 10 0 / 10 1 / 10 1.0 1.0

fragmentation of 

elastic fibers
1 / 10 3 / 10 1 / 10 2 / 10 1.0 0.317

thickening and cell 

abundance in media
0 / 0 3 / 10 2 / 10 2 / 10 0.456 0.083

725 Analysis of histopathological findings from CCA specimen explanted 30 days after MCAO and 

726 cooling procedure. 

727 †P-values refer to Chi-Quadrat-Test for comparison of findings between hypothermia and 

728 normothermia groups, and to McNemar test for comparison between treated (right) and 

729 untreated (left) CCAs within the hypothermia group.
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730 Table 4: Neurological outcome and infarcts on MRI 

731 †p-values refer to comparisons by t-test for MRI volumes and histopathology of chronic infarcts, 

732 and Wilcoxon test for neuroscores.

hypothermia 

group

normothermia 

group
p-value†

Functional neurological outcome; all animals 

   neuroscore# (AUC, day 1-30), median (IQR)

 animals with severe hypoperfusion (score 2-3)

  neuroscore (AUC, day 1-30), median (IQR)

n=10

34 (19-80)

n=8

34 (20-81.75)

n=10

53 (15.5-123.5)

n=5

70 (36-123.5)

0.82

0.54

MRI on day 2, all animals

  Infarct (DWI) volume; mL, mean (SD)

  Edema (T2) volume; mL, mean (SD)

  MCA recanalization (TOF MRA) status; %

 animals with severe hypoperfusion (score 2-3)

  Infarct (DWI) volume; mL, mean (SD)

  Edema (T2) volume; mL, mean (SD)

n=10

5.58 (3.21)

8.33 (3.78)

100%

n=8

6.04 (3.17)

9.20 (3.31)

n=10

4.79 (2.77)

6.07 (3.48)

100%

n=5

6.56 (2.22)

7.72 (3.66)

0.56

0.18

0.76

0.47

MRI on day 30, all animals

  Final infarct (T2) volume; mL, mean (SD)

  MCA recanalization (TOF MRA) status (%)

 animals with severe hypoperfusion (score 2-3)

n=10

1.62 (1.26)

100%

n=8

1.95 (1.28)

n=10

1.80 (1.17)

100%

n=5

2.4 (1.24)

0.74

0.55
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Figure 1: Overview on experimental design and concept of the closed-loop cooling catheter 
(a) Overview on the experimental design. The upper timeline represents the overall study period while the 
lower timeline depicts the day of MCAO and cooling. ‘(X)’ indicates that deworming was performed in case 

the parasitological screening revealed positive results. (b) Concept of CLCC implanted in the common carotid 
artery of a sheep. The serial four-balloon array at the catheter tip and the three-inner-lumen construction of 

the catheter is schematically depicted. 
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Figure 2: Mean temperature drops and differences in the hypothermia versus the normothermia group 
(a) Mean (95%-CI) temperature drops (∆T, °C) were calculated at 5-minute intervals throughout cooling 

(180 min) and post-cooling (30 min) periods. These are depicted for the rectal (●) and nasal (○) 
temperatures. (b) Mean (95%-CI) temperature differences between nasal and rectal temperature probes 
(∆T, °C) were calculated at 5-minute intervals throughout cooling (180 min) and post-cooling (30 min) 
periods. Blue symbols represent the hypothermia and red symbols represent the normothermia group. 
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Figure 3: CT perfusion images during MCAO and consecutive evolution of infarcts on MRI. 
(a) Animal from the hypothermia group. In the hypothermic animal, CTP images reveal mild right MCA 

hypoperfusion (hypoperfusion score: 1) during MCAO, which is only visible due to a slight Tmax prolongation 
(arrow) without any changes on CBF (not shown) and CBV maps. The consecutive MCA infarct is small on 
DWI (arrow) and T2 MRI (arrow) at day 2 (DWI volume, 1.1 mL; T2 volume, 1.7 mL). (b) Animal from the 

normothermia group. In the normothermic animal, severe MCA territory hypoperfusion (hypoperfusion 
score: 3) is disclosed with a lesion being visible on Tmax (arrow), CBF (not shown), and CBV maps (arrow). 
The resulting MCA territory infarct is large (DWI volume 9.2 mL, arrow). T2 MRI shows a surrounding edema 

(total volume 13.4 mL, arrow) and a space-occupying effect (midline shift, arrowhead). False color scales 
indicate Tmax values from 0 (purple) to 12 s (red) and CBV values from 0 mL/100g (purple) to 6 mL/100g 

(red). 
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