14 research outputs found

    Fungal Levels in the Home and Allergic Rhinitis by 5 Years of Age

    Get PDF
    Studies have repeatedly demonstrated that sensitization to fungi, such as Alternaria, is strongly associated with allergic rhinitis and asthma in children. However, the role of exposure to fungi in the development of childhood allergic rhinitis is poorly understood. In a prospective birth cohort of 405 children of asthmatic/allergic parents from metropolitan Boston, Massachusetts, we examined in-home high fungal concentrations (> 90th percentile) measured once within the first 3 months of life as predictors of doctor-diagnosed allergic rhinitis in the first 5 years of life. In multivariate Cox regression analyses, predictors of allergic rhinitis included high levels of dust-borne Aspergillus [hazard ratio (HR) = 3.27; 95% confidence interval (CI), 1.50–7.14], Aureobasidium (HR = 3.04; 95% CI, 1.33–6.93), and yeasts (HR = 2.67; 95% CI, 1.26–5.66). The factors controlled for in these analyses included water damage or mild or mildew in the building during the first year of the child’s life, any lower respiratory tract infection in the first year, male sex, African-American race, fall date of birth, and maternal IgE to Alternaria > 0.35 U/mL. Dust-borne Alternaria and non-sporulating and total fungi were also predictors of allergic rhinitis in models excluding other fungi but adjusting for all of the potential confounders listed above. High measured fungal concentrations and reports of water damage, mold, or mildew in homes may predispose children with a family history of asthma or allergy to the development of allergic rhinitis

    Adrenal function recovery after durable oral corticosteroid sparing with benralizumab in the PONENTE study

    Get PDF
    Background Oral corticosteroid (OCS) dependence among patients with severe eosinophilic asthma can cause adverse outcomes, including adrenal insufficiency. PONENTE's OCS reduction phase showed that, following benralizumab initiation, 91.5% of patients eliminated corticosteroids or achieved a final dosage ≤5 mg·day-1 (median (range) 0.0 (0.0-40.0) mg). Methods The maintenance phase assessed the durability of corticosteroid reduction and further adrenal function recovery. For ~6 months, patients continued benralizumab 30 mg every 8 weeks without corticosteroids or with the final dosage achieved during the reduction phase. Investigators could prescribe corticosteroids for asthma exacerbations or increase daily dosages for asthma control deteriorations. Outcomes included changes in daily OCS dosage, Asthma Control Questionnaire (ACQ)-6 and St George's Respiratory Questionnaire (SGRQ), as well as adrenal status, asthma exacerbations and adverse events. Results 598 patients entered PONENTE; 563 (94.1%) completed the reduction phase and entered the maintenance phase. From the end of reduction to the end of maintenance, the median (range) OCS dosage was unchanged (0.0 (0.0-40.0) mg), 3.2% (n=18/563) of patients experienced daily dosage increases, the mean ACQ-6 score decreased from 1.26 to 1.18 and 84.5% (n=476/563) of patients were exacerbation free. The mean SGRQ improvement (-19.65 points) from baseline to the end of maintenance indicated substantial quality-of-life improvements. Of patients entering the maintenance phase with adrenal insufficiency, 32.4% (n=104/321) demonstrated an improvement in adrenal function. Adverse events were consistent with previous reports. Conclusions Most patients successfully maintained maximal OCS reduction while achieving improved asthma control with few exacerbations and maintaining or recovering adrenal function

    9α,11β-PGF2, a Prostaglandin D2 Metabolite, as a Marker of Mast Cell Activation in Bee Venom-Allergic Patients

    No full text
    Mast cell (MC) mediators, among them prostaglandin D(2) (PGD(2)) and 9α,11β-PGF(2), PGD(2)’s metabolite, play a key role in allergic reactions, including bee venom anaphylaxis (BVA). Assessment of these mediators has never been performed in BVA. The aim of the study was to assess the activation of MC during in vivo provocation with bee venom (BV) and to measure PGD(2) and 9α,11β-PGF(2) in the course of an allergen challenge. The second aim was to determine if assessment of these mediators could be useful for predicting adverse events during venom immunotherapy (VIT). In 16 BV-VIT patients and 12 healthy subjects, levels of PGD(2) and 9α,11β-PGF(2) were assessed during BV provocation by means of the skin chamber method. Chamber fluids, collected at 5 and 15 min, were analyzed for both mediators by gas chromatography mass spectrometry negative ion chemical ionization. BVA in comparison to non-allergic patients had a significantly higher ratio of 9α,11β-PGF(2) in allergen-challenged chambers to 9α,11β-PGF(2) in allergen-free chambers after 15 min of provocation (p = 0.039). Allergen challenge resulted in a significant increase of 9α,11β-PGF(2) levels between 5 and 15 min after provocation only in BVA patients (p < 0.05). Analysis of log-transformed PGD2 levels showed significant difference between changes in PGD(2) concentration between BVA and healthy subjects. No study patient developed adverse reactions during. 9α,11β-PGF(2) is actively generated during the early allergic response to BV. Skin chamber seems to be a promising, non-invasive and safe model of in vivo allergen provocation in BV-allergic patients. High or low levels of both mediators do not predict occurrence of adverse events during VIT
    corecore