8 research outputs found

    The Monitoring of H2S and SO2 Noxious Gases from Industrial Environment with Sensors Based on Flame-Spray-Made SNO2 Nanoparticles

    Get PDF
    The noxious gas sensors were developed successfully using flame-spray-made SnO2 nanoparticles as the sensing materials. The functionalized nanoparticle properties were further analyzed by XRD, BET and TEM analyses. The SnO2 nanoparticles (SSABET: 141.6 m2/g) were investigated revealing non-agglomerated spheroidal, hexagonal, rectangle (3 - 10 nm), and rod-like (3 - 5 nm in width and 5 - 20 nm in length) morphologies. The sensing films were prepared by spin coating onto the Al2O3 substrates interdigitated with Au electrodes. The sensing films were significantly developed in order to detect with H2S (0.5 - 10 ppm) and SO2 (20 - 500 ppm) at the operating temperature ranging from 200 - 350°C. After sensing test, the cross-section of sensing film was analyzed by SEM analyses. It was found that SnO2 sensing film showed higher sensitive to H2S gas with very fast response at lower concentrations (3 s, to 10 ppm). The cross sensitivities of the sensor towards different concentrations of H2S, CO, H2, and C2H2 were measured at 300°C. The sensor evidently shows much less response to CO, H2, and C2H2 than to H2S indicating higher selectivity for H2S of the SnO2 sensor at the lower concentration (10 ppm). In addition, the SnO2 sensor was the most suitable candidate for the efficient detection of H2S noxious gas

    Synthesis of Thermally Spherical CuO Nanoparticles

    Get PDF
    Copper oxide (CuO) nanoparticles were successfully synthesized by a thermal method. The CuO nanoparticles were further characterized by thermogravimetric analysis (TGA), differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), and high resolution transmission electron microscopy (HRTEM), respectively. The specific surface area (SSABET) of CuO nanoparticles was determined by nitrogen adsorption. The SSABET was found to be 99.67 m2/g (dBET of 9.5 nm). The average diameter of the spherical CuO nanoparticles was approximately 6–9 nm

    Flame-Spray-Made Undoped Zinc Oxide Films for Gas Sensing Applications

    Get PDF
    Using zinc naphthenate dissolved in xylene as a precursor undoped ZnO nanopowders were synthesized by the flame spray pyrolysis technique. The average diameter and length of ZnO spherical and hexagonal particles were in the range of 5 to 20 nm, while ZnO nanorods were found to be 5–20 nm wide and 20–40 nm long, under 5/5 (precursor/oxygen) flame conditions. The gas sensitivity of the undoped ZnO nanopowders towards 50 ppm of NO2, C2H5OH and SO2 were found to be 33, 7 and 3, respectively. The sensors showed a great selectivity towards NO2 at high working temperature (at 300 °C), while small resistance variations were observed for C2H5OH and SO2, respectively

    H2 Sensing Response of Flame-Spray-Made Ru/SnO2 Thick Films Fabricated from Spin-Coated Nanoparticles

    Get PDF
    High specific surface area (SSABET: 141.6 m2/g) SnO2 nanoparticles doped with 0.2–3 wt% Ru were successfully produced in a single step by flame spray pyrolysis (FSP). The phase and crystallite size were analyzed by XRD. The specific surface area (SSABET) of the nanoparticles was measured by nitrogen adsorption (BET analysis). As the Ru concentration increased, the SSABET was found to linearly decrease, while the average BET-equivalent particle diameter (dBET) increased. FSP yielded small Ru particles attached to the surface of the supporting SnO2 nanoparticles, indicating a high SSABET. The morphology and accurate size of the primary particles were further investigated by TEM. The crystallite sizes of the spherical, hexagonal, and rectangular SnO2 particles were in the range of 3–10 nm. SnO2 nanorods were found to range from 3–5 nm in width and 5–20 nm in length. Sensing films were prepared by the spin coating technique. The gas sensing of H2 (500–10,000 ppm) was studied at the operating temperatures ranging from 200–350 °C in presence of dry air. After the sensing tests, the morphology and the cross-section of sensing film were analyzed by SEM and EDS analyses. The 0.2%Ru-dispersed on SnO2 sensing film showed the highest sensitivity and a very fast response time (6 s) compared to a pure SnO2 sensing film, with a highest H2 concentration of 1 vol% at 350 °C and a low H2 detection limit of 500 ppm at 200 °C

    Sensing Characteristics of Flame-Spray-Made Pt/ZnO Thick Films as H2 Gas Sensor

    Get PDF
    Hydrogen sensing of thick films of nanoparticles of pristine, 0.2, 1.0 and 2.0 atomic percentage of Pt concentration doped ZnO were investigated. ZnO nanoparticles doped with 0.2–2.0 at.% Pt were successfully produced in a single step by flame spray pyrolysis (FSP) technique using zinc naphthenate and platinum(II) acetylacetonate as precursors dissolved in xylene. The particle properties were analyzed by XRD, BET, SEM and TEM. Under the 5/5 (precursor/oxygen) flame condition, ZnO nanoparticles and nanorods were observed. The crystallite sizes of ZnO spheroidal and hexagonal particles were found to be ranging from 5 to 20 nm while ZnO nanorods were seen to be 5–20 nm wide and 20–40 nm long. ZnO nanoparticles paste composed of ethyl cellulose and terpineol as binder and solvent respectively was coated on Al2O3 substrate interdigitated with gold electrodes to form thin films by spin coating technique. The thin film morphology was analyzed by SEM technique. The gas sensing properties toward hydrogen (H2) was found that the 0.2 at.% Pt/ZnO sensing film showed an optimum H2 sensitivity of ∼164 at hydrogen concentration in air of 1 volume% at 300 °C and a low hydrogen detection limit of 50 ppm at 300 °C operating temperature

    Sensing Characteristics of Flame-Spray-Made Pt/ZnO Thick Films as H2 Gas Sensor

    No full text
    Hydrogen sensing of thick films of nanoparticles of pristine, 0.2, 1.0 and 2.0 atomic percentage of Pt concentration doped ZnO were investigated. ZnO nanoparticles doped with 0.2–2.0 at.% Pt were successfully produced in a single step by flame spray pyrolysis (FSP) technique using zinc naphthenate and platinum(II) acetylacetonate as precursors dissolved in xylene. The particle properties were analyzed by XRD, BET, SEM and TEM. Under the 5/5 (precursor/oxygen) flame condition, ZnO nanoparticles and nanorods were observed. The crystallite sizes of ZnO spheroidal and hexagonal particles were found to be ranging from 5 to 20 nm while ZnO nanorods were seen to be 5–20 nm wide and 20–40 nm long. ZnO nanoparticles paste composed of ethyl cellulose and terpineol as binder and solvent respectively was coated on Al2O3 substrate interdigitated with gold electrodes to form thin films by spin coating technique. The thin film morphology was analyzed by SEM technique. The gas sensing properties toward hydrogen (H2) was found that the 0.2 at.% Pt/ZnO sensing film showed an optimum H2 sensitivity of ~164 at hydrogen concentration in air of 1 volume% at 300 °C and a low hydrogen detection limit of 50 ppm at 300 °C operating temperature

    H2 Sensor Based on Au/TiO2 Nanoparticles by Flame-Made

    No full text
    TiO2 is used extensively as a gas sensing material due to its change in electrical conductivity under analyst gas exposure. Gold (Au) is a good catalyst that promotes chemical reactions by reducing the activation energy between sensing film and particular gas. Pure TiO2 and TiO2 nanoparticles doped with 0.25-0.75 at% Au were successfully produced in a single step by Flame spray pyrolysis (FSP) technique. The structure and morphology of as-prepared products have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM). TiO2 and Au-doped TiO2 nanoparticle films were prepared by spin-coating technique. The gas sensing of H2 was studied at the operating temperatures ranging from 300-350°C in dry air. It was found that the TiO2 doped with Au sensing film showed higher response of H2, with faster response time (within second) than pure TiO2 sensing film. The response increased and the response time decreased with increasing H2 concentrations
    corecore