15 research outputs found

    Alteration of endosomal trafficking is associated with early-onset parkinsonism caused by SYNJ1 mutations

    Get PDF
    Recently, a new form of autosomal recessive early-onset parkinsonism (PARK20), due to mutations in the gene encoding the phosphoinositide phosphatase, Synaptojanin 1 (Synj1), has been reported. Several genes responsible for hereditary forms of Parkinson's disease are implicated in distinct steps of the endolysosomal pathway. However, the nature and the degree of endocytic membrane trafficking impairment in early-onset parkinsonism remains elusive. Here, we show that depletion of Synj1 causes drastic alterations of early endosomes, which become enlarged and more numerous, while it does not affect the morphology of late endosomes both in non-neuronal and neuronal cells. Moreover, Synj1 loss impairs the recycling of transferrin, while it does not alter the trafficking of the epidermal growth factor receptor. The ectopic expression of Synj1 restores the functions of early endosomes, and rescues these trafficking defects in depleted cells. Importantly, the same alterations of early endosomal compartments and trafficking defects occur in fibroblasts of PARK20 patients. Our data indicate that Synj1 plays a crucial role in regulating the homeostasis and functions of early endosomal compartments in different cell types, and highlight defective cellular pathways in PARK20. In addition, they strengthen the link between endosomal trafficking and Parkinson's disease

    Molecular Mechanisms Generating and Stabilizing Terminal 22q13 Deletions in 44 Subjects with Phelan/McDermid Syndrome

    Get PDF
    In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17–74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS

    The role of proteases in fibrinonectin matrix remodeling in thyroid epithelial cell monolayer cultures

    No full text
    Fischer rat thyroid (FRT) cells organize a matrix of extracellular fibronectin (FN) fibrils, which undergoes extensive remodeling according to cell culture confluence. In non-confluent cells FN forms a fibrillar array associated with the ventral cell surface. However, basal FN is progressively removed in confluent cultures and substituted by non-fibrillar FN deposits at lateral cell domains in regions of cell-cell contacts. FRT cells secrete and expose on the plasma membrane the tissue-type plasminogen activator and, in serum-free cultures, plasminogen induces a rapid loss of FN fibrils. Incubation with plasmin inhibitors greatly reduces this effect. FRT cells also express annexin II, a plasminogen receptor, suggesting that plasmin activity is associated with the pericellular enviroment. This is in agreement with the observation that a great reduction in FN degradation is observed if the cells are pre-incubated with carboxypeptidase B, which prevents plasminogen binding to the cells. A gelatinolytic activity with a molecular weigth equivalent to MMP-2 has been demonstrated by zymography of culture media, and the presence of MMP-2 and MT1-MMP on the cell plasma membrane has been detected by immunofluorescence. These results indicate that in the FN remodeling process, occurring during FRT epithelium maturation, both plasmin-dependent (tPA activated) and plasmin-independent proteolytic activities are involved

    A dynamic podosome-like structure of epithelial cells.

    No full text
    Focal contacts and hemidesmosomes are cell-matrix adhesion structures of cultured epithelial cells. While focal contacts link the extracellular matrix to microfilaments, hemidesmosomes make connections with intermediate filaments. We have analyzed hemidesmosome assembly in 804G carcinoma cells. Our data show that hemidesmosomes are organized around a core of actin filaments that appears early during cell adhesion. These actin structures look similar to podosomes described in cells of mesenchymal origin. These podosome-like structures are distinct from focal contacts and specifically contain Arp3 (Arp2/3 complex), cortactin, dynamin, gelsolin, N-WASP, VASP, Grb2 and src-like kinase(s). The integrin alpha3beta1 is localized circularly around F-actin cores and co-distributes with paxillin, vinculin, and zyxin. We also show that the maintenance of the actin core and hemidesmosomes is dependent on actin polymerization, src-family kinases, and Grb2, but not on microtubules. Video microscopy analysis reveals that assembly of hemidesmosomes is preceded by recruitment of beta4 integrin subunit to the actin core before its positioning at hemidesmosomes. When 804G cells are induced to migrate, actin cores as well as hemidesmosomes disappear and beta4 integrin subunit becomes co-localized with dynamic actin at leading edges. We show that podosome-like structures are not unique to cells of mesenchymal origin, but also appear in epithelial cells, where they seem to be related to basement membrane adhesion

    Differential recognition of a tyrosine-dependent signal in the basolateral and endocytic pathways of thyroid epithelial cells.

    No full text

    Differential recognition of a tyrosine-dependent signal in the basolateral and endocytic pathways of thyroid epithelial cells.

    No full text
    Trafficking of receptors is of crucial importance for the physiology of most exocrine and endocrine organs. It is not known yet if the same mechanisms are used for sorting in the exocytic and endocytic pathways in the different epithelial tissues. In this work, we have used a deletion mutant of the human neurotrophin receptor p75(hNTR) that is normally localized on the apical membrane when expressed in Madin-Darby canine kidney cells. This internal 57-amino acid deletion of the cytoplasmic tail leads to a relocation of the protein from the apical to the basolateral membrane and to rapid and efficient endocytosis. These events are mediated by a signal localized within 9 amino acids of the mutated cytoplasmic tail that is strictly dependent on a tyrosine residue (Tyr-308). We have analyzed the basolateral sorting efficiency and endocytic capacity of this signal in Fischer rat thyroid (FRT) cells, in which basolateral and endocytic determinants have not yet been identified. We found that this targeting signal can mediate efficient transport to the basolateral membrane also in FRT cells with similar tyrosine dependence as in MDCK cells. In contrast to MDCK cells, this Tyr-based signal was not able to mediate coated pits localization and endocytosis in FRT cells. These data represent the first characterization of basolateral/endocytic signals in thyroid epithelial cells. Furthermore, our results indicate that requirements for tyrosine-dependent basolateral sorting signals are conserved among cell lines from different tissues but that the recognition of the colinear endocytic signal is tissue specific

    Polarized secretion of plasminogen activators by epithelial cell monolayers.

    No full text
    We have investigated the synthesis and the polarized secretion of plasminogen activators (PAs) in three epithelial cell lines (FRT, derived from rat thyroid; MDCK, from canine kidney, and CaCo-2, from human intestine) grown on filters, in bicameral systems. Confluency and acquisition of functional polarity were assessed by measuring transepithelial resistance and by showing polarized secretion of endogenous proteins. By zymography, before and after immunoprecipitation with specific antibodies, we found that FRT cells synthesized tissue plasminogen activator (tPA) and that tPA activity was mostly confined to the apical cell compartment. MDCK and CaCo-2 cells, instead, synthesized urokinase-type plasminogen activator (uPA). In MDCK cells the uPA activity was found predominantly in the apical cell compartment while in CaCo-2 cells it was mostly basolateral

    The polarized epithelial phenotype is dominant in hybrids between polarized and unpolarized rat thyroid cell lines.

    No full text

    Mild Wolf-Hirschhorn phenotype and partial GH deficiency in a patient with a 4p terminal deletion.

    No full text
    Wolf-Hirschhorn syndrome (WHS) is caused by a variably-sized deletion of chromosome 4 involving band 4p16 whose typical craniofacial features are "Greek warrior helmet appearance" of the nose, microcephaly, and prominent glabella. Almost all patients show mental retardation and pre- and post-natal growth delay. Patient was born at term, after a pregnancy characterized by intra-uterine growth retardation (IUGR). Delivery was uneventful. Developmental delay was evident since the first months of life. At 2 years, he developed generalized tonic-clonic seizures. Because of short stature, low growth velocity and delayed bone age, at 4 years he underwent growth hormone (GH) evaluation. Peak GH after two provocative tests revealed a partial GH deficiency. Clinical observation at 7 years disclosed a distinctive facial appearance, with microcephaly, prominent eyes, and beaked nose. Brain MRI showed left temporal mesial sclerosis. GTG banded karyotype was normal. Because of mental retardation, subtelomeric fluorescence in situ hybridization (FISH) analysis was performed, disclosing a relatively large deletion involving 4p16.2 --> pter (about 4.5 Mb), in the proband, not present in the parents. The smallest deletion detected in a WHS patient thus far includes two candidate genes, WHSC1 and WHSC2. Interestingly, that patient did not show shortness of stature, and that could be due to the haploinsufficiency of other genes localized in the flanking regions. Contribution of GH alterations and possible GH therapy should be further considered in WHS patients
    corecore