30 research outputs found

    Durvalumab in Combination with Olaparib in Patients with Relapsed SCLC: Results from a Phase II Study

    Get PDF
    Purpose: Despite high tumor mutationburden, immune checkpoint blockade has limited efficacy in SCLC. We hypothesized that poly (ADP-ribose) polymerase inhibition could render SCLC more susceptible to immune checkpoint blockade. Methods: A single-arm, phase II trial (NCT02484404) enrolled patients with relapsed SCLC who received durvalumab, 1500 mg every 4 weeks, and olaparib, 300 mg twice a day. The primary outcome was objective response rate. Correlative studies included mandatory collection of pretreatment and during-treatment biopsy specimens, which were assessed to define SCLC immunephenotypes: desert (CD8-positive T-cell prevalence low), excluded (CD8-positive T cells in stroma immediately adjacent/within tumor), and inflamed (CD8-positive T cells in direct contact with tumor). Results: A total of 20 patients were enrolled. Their median age was 64 years, and most patients (60%) had platinum-resistant/refractory disease. Of 19 evaluable patients, two were observed to have partial or complete responses (10.5%), including a patient with EGFR-transformed SCLC. Clinical benefit was observed in four patients (21.1% [95% confidence interval: 6.1%–45.6%]) with confirmed responses or prolonged stable disease (≥8 months). The most common treatment-related adverse events were anemia (80%), lymphopenia (60%), and leukopenia (50%). Nine of 14 tumors (64%) exhibited an excluded phenotype; 21% and 14% of tumors exhibited the inflamed and desert phenotypes, respectively. Tumor responses were observed in all instances in which pretreatment tumors showed an inflamed phenotype. Of the five tumors without an inflamed phenotype at baseline, no during-treatment increase in T-cell infiltration or programmed death ligand 1 expression on tumor-infiltrating immune cells was observed. Conclusions: The study combination did not meet the preset bar for efficacy. Pretreatment and during-treatment biopsy specimens suggested that tumor immune phenotypes may be relevant for SCLC responses to immune checkpoint blockade combinations. The predictive value of preexisting CD8-positive T-cell infiltrates observed in this study needs to be confirmed in larger cohorts

    Notum produced by Paneth cells attenuates regeneration of aged intestinal epithelium

    Get PDF
    A decline in stem cell function impairs tissue regeneration during ageing, but the role of the stem-cell-supporting niche in ageing is not well understood. The small intestine is maintained by actively cycling intestinal stem cells that are regulated by the Paneth cell niche(1,2). Here we show that the regenerative potential of human and mouse intestinal epithelium diminishes with age owing to defects in both stem cells and their niche. The functional decline was caused by a decrease in stemness-maintaining Wnt signalling due to production of Notum, an extracellular Wnt inhibitor, in aged Paneth cells. Mechanistically, high activity of mammalian target of rapamycin complex 1 (mTORC1) in aged Paneth cells inhibits activity of peroxisome proliferator activated receptor alpha (PPAR-alpha)(3), and lowered PPAR-a activity increased Notum expression. Genetic targeting of Notum or Wnt supplementation restored function of aged intestinal organoids. Moreover, pharmacological inhibition of Notum in mice enhanced the regenerative capacity of aged stem cells and promoted recovery from chemotherapy-induced damage. Our results reveal a role of the stem cell niche in ageing and demonstrate that targeting of Notum can promote regeneration of aged tissues.Peer reviewe

    The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance

    Get PDF
    In this study, the impact of the apolipoprotein B mRNA-editing catalytic subunit-like (APOBEC) enzyme APOBEC3B (A3B) on epidermal growth factor receptor (EGFR)-driven lung cancer was assessed. A3B expression in EGFR mutant (EGFRmut) non-small-cell lung cancer (NSCLC) mouse models constrained tumorigenesis, while A3B expression in tumors treated with EGFR-targeted cancer therapy was associated with treatment resistance. Analyses of human NSCLC models treated with EGFR-targeted therapy showed upregulation of A3B and revealed therapy-induced activation of nuclear factor kappa B (NF-ÎşB) as an inducer of A3B expression. Significantly reduced viability was observed with A3B deficiency, and A3B was required for the enrichment of APOBEC mutation signatures, in targeted therapy-treated human NSCLC preclinical models. Upregulation of A3B was confirmed in patients with NSCLC treated with EGFR-targeted therapy. This study uncovers the multifaceted roles of A3B in NSCLC and identifies A3B as a potential target for more durable responses to targeted cancer therapy.</p

    High fat diet enhances stemness and tumorigenicity of intestinal progenitors

    Get PDF
    Little is known about how pro-obesity diets regulate tissue stem and progenitor cell function. Here we find that high fat diet (HFD)-induced obesity augments the numbers and function of Lgr5+ intestinal stem-cells (ISCs) of the mammalian intestine. Mechanistically, HFD induces a robust peroxisome proliferator-activated receptor delta (PPAR-d) signature in intestinal stem and (non-ISC) progenitor cells, and pharmacologic activation of PPAR-d recapitulates the effects of a HFD on these cells. Like a HFD, ex vivo treatment of intestinal organoid cultures with fatty acid constituents of the HFD enhances the self-renewal potential of these organoid bodies in a PPAR-d dependent manner. Interestingly, HFD- and agonist-activated PPAR-d signaling endow organoid-initiating capacity to progenitors, and enforced PPAR-d signaling permits these progenitors to form in vivo tumors upon loss of the tumor suppressor Apc. These findings highlight how diet-modulated PPAR-d activation alters not only the function of intestinal stem and progenitor cells, but also their capacity to initiate tumors

    Industry Collaboration and Primary Guest Authorship of High-Impact Clinical Trials

    No full text

    Impact of industry funding and collaboration in oncology RCTs.

    No full text

    The Immunotherapy Landscape in Adrenocortical Cancer.

    No full text
    Adrenocortical carcinoma (ACC) is a rare cancer of the adrenal gland that is frequently associated with excess production of adrenal hormones. Although surgical resection may be curative in early-stage disease, few effective therapeutic options exist in the inoperable advanced or metastatic setting. Immunotherapies, inclusive of a broad array of immune-activating and immune-modulating antineoplastic agents, have demonstrated clinical benefit in a wide range of solid and hematologic malignancies. Due to the broad activity across multiple cancer types, there is significant interest in testing these agents in rare tumors, including ACC. Multiple clinical trials evaluating immunotherapies for the treatment of ACC have been conducted, and many more are ongoing or planned. Immunotherapies that have been evaluated in clinical trials for ACC include the immune checkpoint inhibitors pembrolizumab, nivolumab, and avelumab. Other immunotherapies that have been evaluated include the monoclonal antibodies figitumumab and cixutumumab directed against the ACC-expressed insulin-like growth factor 1 (IGF-1) receptor, the recombinant cytotoxin interleukin-13-pseudomonas exotoxin A, and autologous tumor lysate dendritic cell vaccine. These agents have shown modest clinical activity, although nonzero in the case of the immune checkpoint inhibitors. Clinical trials are ongoing to evaluate whether this clinical activity may be augmented through combinations with other immune-acting agents or targeted therapies
    corecore