19 research outputs found

    Regulation of expression of autophagy genes by Atg8a-interacting partners Sequoia, YL-1 and Sir2 in Drosophila

    Get PDF
    Autophagy is the degradation of cytoplasmic material through the lysosomal pathway. One of the most studied autophagy-related proteins is LC3. Despite growing evidence that LC3 is enriched in the nucleus, its nuclear role is poorly understood. Here, we show that Drosophila Atg8a protein, homologous to mammalian LC3, interacts with the transcription factor Sequoia in a LIR motif-dependent manner. We show that Sequoia depletion induces autophagy in nutrient-rich conditions through the enhanced expression of autophagy genes. We show that Atg8a interacts with YL-1, a component of a nuclear acetyltransferase complex, and that it is acetylated in nutrient-rich conditions. We also show that Atg8a interacts with the deacetylase Sir2, which deacetylates Atg8a during starvation to activate autophagy. Our results suggest a mechanism of regulation of the expression of autophagy genes by Atg8a, which is linked to its acetylation status and its interaction with Sequoia, YL-1, and Sir2

    An HLA-E-targeted TCR bispecific molecule redirects T cell immunity against Mycobacterium tuberculosis

    Get PDF
    Peptides presented by HLA - E, a molecule with very limited polymorphism, represent attractive targets for T cell receptor (TCR) - based immunotherapies to circumvent the limitations imposed by the high polymorphism of classical HLA genes in the human population. Here, we describe a TCR - based bispecific molecule that potently and selectively binds HLA - E in complex with a peptide encoded by the inhA gene of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis in humans. We reveal the biophysical and structural bases underpinning the potency and specificity of this molecule and demonstrate its ability to redirect polyclonal T cells to target HLA - E - expressing cells transduced with mycobacterial inhA as well as primary cells infected with virulent Mtb. Additionally, we demonstrate elimination of Mtb - infected cells and reduction of intracellular Mtb growth. Our study suggests an approach to enhance host T cell immunity against Mtb and provides proof of principle for an innovative TCR - based therapeutic strategy overcoming HLA polymorphism and therefore applicable to a broader patient population

    International consensus conference recommendations on ultrasound education for undergraduate medical students

    Get PDF
    Objectives: The purpose of this study is to provide expert consensus recommendations to establish a global ultrasound curriculum for undergraduate medical students. Methods: 64 multi-disciplinary ultrasound experts from 16 countries, 50 multi-disciplinary ultrasound consultants, and 21 medical students and residents contributed to these recommendations. A modified Delphi consensus method was used that included a systematic literature search, evaluation of the quality of literature by the GRADE system, and the RAND appropriateness method for panel judgment and consensus decisions. The process included four in-person international discussion sessions and two rounds of online voting. Results: A total of 332 consensus conference statements in four curricular domains were considered: (1) curricular scope (4 statements), (2) curricular rationale (10 statements), (3) curricular characteristics (14 statements), and (4) curricular content (304 statements). Of these 332 statements, 145 were recommended, 126 were strongly recommended, and 61 were not recommended. Important aspects of an undergraduate ultrasound curriculum identified include curricular integration across the basic and clinical sciences and a competency and entrustable professional activity-based model. The curriculum should form the foundation of a life-long continuum of ultrasound education that prepares students for advanced training and patient care. In addition, the curriculum should complement and support the medical school curriculum as a whole with enhanced understanding of anatomy, physiology, pathophysiological processes and clinical practice without displacing other important undergraduate learning. The content of the curriculum should be appropriate for the medical student level of training, evidence and expert opinion based, and include ongoing collaborative research and development to ensure optimum educational value and patient care. Conclusions: The international consensus conference has provided the first comprehensive document of recommendations for a basic ultrasound curriculum. The document reflects the opinion of a diverse and representative group of international expert ultrasound practitioners, educators, and learners. These recommendations can standardize undergraduate medical student ultrasound education while serving as a basis for additional research in medical education and the application of ultrasound in clinical practice

    Regulation of Expression of Autophagy Genes by Atg8a-Interacting Partners Sequoia, YL-1, and Sir2 in Drosophila

    Get PDF
    Autophagy is the degradation of cytoplasmic material through the lysosomal pathway. One of the most studied autophagy-related proteins is LC3. Despite growing evidence that LC3 is enriched in the nucleus, its nuclear role is poorly understood. Here, we show that Drosophila Atg8a protein, homologous to mammalian LC3, interacts with the transcription factor Sequoia in a LIR motif-dependent manner. We show that Sequoia depletion induces autophagy in nutrient-rich conditions through the enhanced expression of autophagy genes. We show that Atg8a interacts with YL-1, a component of a nuclear acetyltransferase complex, and that it is acetylated in nutrient-rich conditions. We also show that Atg8a interacts with the deacetylase Sir2, which deacetylates Atg8a during starvation to activate autophagy. Our results suggest a mechanism of regulation of the expression of autophagy genes by Atg8a, which is linked to its acetylation status and its interaction with Sequoia, YL-1, and Sir2

    Atg8a interacts with transcription factor Sequoia to control the expression of autophagy genes in Drosophila

    No full text
    Autophagy is a fundamental, evolutionarily conserved, process in which cytoplasmic material is degraded through the lysosomal pathway [1-7]. One of the most important and well-studied autophagy-related proteins is LC3 [Microtubule-associated protein 1 light chain 3, (called Atg8 in yeast and Drosophila)], which participates in autophagosome formation and autophagy cargo selection in the cytoplasm, and is one of the most widely utilized markers of autophagy [8, 9]. Despite growing evidence that LC3 is enriched in the nucleus, little is known about the mechanisms involved in targeting LC3 to the nucleus and the nuclear components it interacts with [10-13]. Here we show that Drosophila Atg8a protein, homologous to mammalian LC3 and yeast Atg8, interacts with the transcription factor Sequoia in a LIR-motif dependent manner. We show that Sequoia depletion induces autophagy in nutrient rich conditions through enhanced expression of autophagy genes. We also show that Atg8a interacts with YL-1, a component of a nuclear acetyltransferase complex, and is acetylated at position K46. Additionally, we show that Atg8a interacts with the deacetylase Sir2, which deacetylates Atg8a during starvation in order to activate autophagy. Our results suggest a mechanism of regulation of expression of autophagy genes by Atg8a, which is linked to its acetylation status and its interaction with Sequoia, YL-1 and Sir2
    corecore