105 research outputs found

    Successful Weight Loss Surgery Improves Eating Control and Energy Metabolism: A Review of the Evidence

    Get PDF
    Eating behavior is determined by a balance of memories in terms of reward and punishment to satisfy the urge to consume food. Refilling empty energy stores and hedonistic motivation are rewarding aspects of eating. Overfeeding, associated adverse GI effects, and obesity implicate punishment. In the current review, evidence is given for the hypothesis that bariatric surgery affects control over eating behavior.Moreover, any caloric overload will reduce the feeling of satiety. Durable weight loss after bariatric surgery is probably the result of a new equilibrium between reward and punishment, together with a better signaling of satiation due to beneficial metabolic changes.We propose to introduce three main treatment goals for bariatric surgery: 1) acceptable weight loss, 2) improvement of eating control, and 3) metabolic benefit. To achieve this goal, loss of 50% to 70% of excess weight will be appropriate (i.e. 30% to 40% loss of initial weight), depending on the degree of obesity prior to operation

    Hypothalamic inflammation is reversed by endurance training in anorectic-cachectic rats

    Get PDF
    <p>Abstract</p> <p>Aim</p> <p>We tested the effects of a cancer cachexia-anorexia sydrome upon the balance of anti and pro-inflammatory cytokines in the hypothalamus of sedentary or trained tumour-bearing (Walker-256 carcinosarcoma) rats.</p> <p>Methods</p> <p>Animals were randomly assigned to a sedentary control (SC), sedentary tumour-bearing (ST), and sedentary pair-fed (SPF) groups or, exercised control (EC), exercised tumour-bearing (ET) and exercised pair-fed (EPF) groups. Trained rats ran on a treadmill (60%VO<sub>2max</sub>) for 60 min/d, 5 days/wk, for 8 wks. We evaluated food intake, leptin and cytokine (TNF-α, IL1β) levels in the hypothalamus.</p> <p>Results</p> <p>The cumulative food intake and serum leptin concentration were reduced in ST compared to SC. Leptin gene expression in the retroperitoneal adipose tissue (RPAT) was increased in SPF in comparison with SC and ST, and in the mesenteric adipose tissue (MEAT) the same parameter was decreased in ST in relation to SC. Leptin levels in RPAT and MEAT were decreased in ST, when compared with SC. Exercise training was also able to reduce tumour weight when compared to ST group. In the hypothalamus, IL-1β and IL-10 gene expression was higher in ST than in SC and SPF. Cytokine concentration in hypothalamus was higher in ST (TNF-α and IL-1β, p < 0.05), compared with SC and SPF. These pro-inflammatory cytokines concentrations were restored to control values (p < 0.05), when the animals were submitted to endurance training.</p> <p>Conclusion</p> <p>Cancer-induced anorexia leads towards a pro-inflammatory state in the hypothalamus, which is prevented by endurance training which induces an anti-inflammatory state, with concomitant decrease of tumour weight.</p

    The Nutritional Induction of COUP-TFII Gene Expression in Ventromedial Hypothalamic Neurons Is Mediated by the Melanocortin Pathway

    Get PDF
    BACKGROUND: The nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is an important coordinator of glucose homeostasis. We report, for the first time, a unique differential regulation of its expression by the nutritional status in the mouse hypothalamus compared to peripheral tissues. METHODOLOGY/PRINCIPAL FINDINGS: Using hyperinsulinemic-euglycemic clamps and insulinopenic mice, we show that insulin upregulates its expression in the hypothalamus. Immunofluorescence studies demonstrate that COUP-TFII gene expression is restricted to a subpopulation of ventromedial hypothalamic neurons expressing the melanocortin receptor. In GT1-7 hypothalamic cells, the MC4-R agonist MTII leads to a dose dependant increase of COUP-TFII gene expression secondarily to a local increase in cAMP concentrations. Transfection experiments, using a COUP-TFII promoter containing a functional cAMP responsive element, suggest a direct transcriptional activation by cAMP. Finally, we show that the fed state or intracerebroventricular injections of MTII in mice induce an increased hypothalamic COUP-TFII expression associated with a decreased hepatic and pancreatic COUP-TFII expression. CONCLUSIONS/SIGNIFICANCE: These observations strongly suggest that hypothalamic COUP-TFII gene expression could be a central integrator of insulin and melanocortin signaling pathway within the ventromedial hypothalamus. COUP-TFII could play a crucial role in brain integration of circulating signal of hunger and satiety involved in energy balance regulation

    Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis

    Get PDF
    The central nervous system (CNS) is capable of gathering information on the body’s nutritional state and it implements appropriate behavioral and metabolic responses to changes in fuel availability. This feedback signaling of peripheral tissues ensures the maintenance of energy homeostasis. The hypothalamus is a primary site of convergence and integration for these nutrient-related feedback signals, which include central and peripheral neuronal inputs as well as hormonal signals. Increasing evidence indicates that glucose and lipids are detected by specialized fuel-sensing neurons that are integrated in these hypothalamic neuronal circuits. The purpose of this review is to outline the current understanding of fuel-sensing mechanisms in the hypothalamus, to integrate the recent findings in this field, and to address the potential role of dysregulation in these pathways in the development of obesity and type 2 diabetes mellitus

    Leptin signaling and circuits in puberty and fertility

    Full text link

    Imaging body composition in obesity and weight loss: challenges and opportunities

    No full text
    Heidi J Silver1, E Brian Welch2, Malcolm J Avison2, Kevin D Niswender1,31Department of Medicine, 2Department of Radiology and Radiological Sciences, Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA; 3Tennessee Valley Healthcare System, Nashville, TN, USAAbstract: Obesity is a threat to public health worldwide primarily due to the comorbidities related to visceral adiposity, inflammation, and insulin resistance that increase risk for type 2 diabetes and cardiovascular disease. The translational research portfolio that originally described these risk factors was significantly enhanced by imaging techniques, such as dual-energy X-ray absorptiometry (DEXA), computed tomography (CT), and magnetic resonance imaging (MRI). In this article, we briefly review the important contributions of these techniques to understand the role of body composition in the pathogenesis of obesity-related complications. Notably, these imaging techniques have contributed greatly to recent findings identifying gender and racial differences in body composition and patterns of body composition change during weight loss. Although these techniques have the ability to generate good-quality body composition data, each possesses limitations. For example, DEXA is unable to differentiate type of fat, CT has better resolution but provides greater ionizing radiation exposure, and MRI tends to require longer imaging times and specialized equipment for acquisition and analysis. With the serious need for efficacious and cost-effective therapies to appropriately identify and treat at-risk obese individuals, there is greater need for translational tools that can further elucidate the interplay between body composition and the metabolic aberrations associated with obesity. In conclusion, we will offer our perspective on the evolution toward an ideal imaging method for body composition assessment in obesity and weight loss, and the challenges remaining to achieve this goal.Keywords: obesity, imaging, body composition, visceral fa
    corecore