97 research outputs found

    On Discovering Electromagnetic Emission from Neutron Star Mergers: The Early Years of Two Gravitational Wave Detectors

    Get PDF
    We present the first simulation addressing the prospects of finding an electromagnetic (EM) counterpart to gravitational wave detections (GW) during the early years of only two advanced interferometers. The perils of such a search may have appeared insurmountable when considering the coarse ring-shaped GW localizations spanning thousands of deg^2 using time-of-arrival information alone. We show that leveraging the amplitude and phase information of the predicted GW signal narrows the localization to arcs with a median area of only ~250 deg^2, thereby making an EM search tractable. Based on the locations and orientations of the two LIGO detectors, we find that the GW sensitivity is limited to one polarization and thus to only two sky quadrants. Thus, the rates of GW events with two interferometers is only ~40% of the rate with three interferometers of similar sensitivity. Another important implication of the sky quadrant bias is that EM observatories in North America and Southern Africa would be able to systematically respond to GW triggers several hours sooner than Russia and Chile. Given the larger sky areas and the relative proximity of detected mergers, 1m-class telescopes with very wide-field cameras are well positioned for the challenge of finding an EM counterpart. Identification of the EM counterpart amidst the even larger numbers of false positives further underscores the importance of building a comprehensive catalog of foreground stellar sources, background AGN and potential host galaxies in the local universe.Comment: Submitted to ApJL, 8 pages, 4 figures, 1 tabl

    Gravitational Waves and Time Domain Astronomy

    Get PDF
    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the next decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop at featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.Comment: Submitted to Proc. IAU 285, "New Horizons in Transient Astronomy", Oxford, Sept. 201

    Remnant baryon mass outside of the black hole after a neutron star-black hole merger

    Get PDF
    Gravitational-wave (GW) and electromagnetic (EM) signals from the merger of a Neutron Star (NS) and a Black Hole (BH) are a highly anticipated discovery in extreme gravity, nuclear-, and astrophysics. We develop a simple formula that distinguishes between merger outcomes and predicts the post-merger remnant mass, validated with 75 simulations. Our formula improves on existing results by describing critical unexplored regimes: comparable masses and higher BH spins. These are important to differentiate NSNS from NSBH mergers, and to infer source physics from EM signals.Comment: 9 pages, 5 figures, 2 table

    Suitability of post-Newtonian/numerical-relativity hybrid waveforms for gravitational wave detectors

    Full text link
    This article presents a study of the sufficient accuracy of post-Newtonian and numerical relativity waveforms for the most demanding usage case: parameter estimation of strong sources in advanced gravitational wave detectors. For black hole binaries, these detectors require accurate waveform models which can be constructed by fusing an analytical post-Newtonian inspiral waveform with a numerical relativity merger-ringdown waveform. We perform a comprehensive analysis of errors that enter such "hybrid waveforms". We find that the post-Newtonian waveform must be aligned with the numerical relativity waveform to exquisite accuracy, about 1/100 of a gravitational wave cycle. Phase errors in the inspiral phase of the numerical relativity simulation must be controlled to less than about 0.1rad. (These numbers apply to moderately optimistic estimates about the number of GW sources; exceptionally strong signals require even smaller errors.) The dominant source of error arises from the inaccuracy of the investigated post-Newtonian Taylor-approximants. Using our error criterium, even at 3.5-th post-Newtonian order, hybridization has to be performed significantly before the start of the longest currently available numerical waveforms which cover 30 gravitational wave cycles. The current investigation is limited to the equal-mass, zero-spin case and does not take into account calibration errors of the gravitational wave detectors.Comment: 32 pages, 12 figures, submitted to CQG for the NRDA2010 conference proceedings, added new figure (fig. 5) since last versio

    Binary black hole merger: symmetry and the spin expansion

    Full text link
    We regard binary black hole (BBH) merger as a map from a simple initial state (two Kerr black holes, with dimensionless spins {\bf a} and {\bf b}) to a simple final state (a Kerr black hole with mass m, dimensionless spin {\bf s}, and kick velocity {\bf k}). By expanding this map around {\bf a} = {\bf b} = 0 and applying symmetry constraints, we obtain a simple formalism that is remarkably successful at explaining existing BBH simulations. It also makes detailed predictions and suggests a more efficient way of mapping the parameter space of binary black hole merger. Since we rely on symmetry rather than dynamics, our expansion complements previous analytical techniques.Comment: 4 pages, 4 figures, matches Phys. Rev. Lett. versio

    Identifying Elusive Electromagnetic Counterparts to Gravitational Wave Mergers: An End-to-end Simulation

    Get PDF
    Combined gravitational wave (GW) and electromagnetic (EM) observations of compact binary mergers should enable detailed studies of astrophysical processes in the strong-field gravity regime. This decade, ground-based GW interferometers promise to routinely detect compact binary mergers. Unfortunately, networks of GW interferometers have poor angular resolution on the sky and their EM signatures are predicted to be faint. Therefore, a challenging goal will be to unambiguously pinpoint the EM counterparts of GW mergers. We perform the first comprehensive end-to-end simulation that focuses on: (1) GW sky localization, distance measures, and volume errors with two compact binary populations and four different GW networks; (2) subsequent EM detectability by a slew of multiwavelength telescopes; and (3) final identification of the merger counterpart amidst a sea of possible astrophysical false positives. First, we find that double neutron star binary mergers can be detected out to a maximum distance of 400 Mpc (or 750 Mpc) by three (or five) detector GW networks, respectively. Neutron-star-black-hole binary mergers can be detected a factor of 1.5 further out; their median to maximum sky localizations are 50-170 deg^2 (or 6-65 deg^2) for a three (or five) detector GW network. Second, by optimizing depth, cadence, and sky area, we quantify relative fractions of optical counterparts that are detectable by a suite of different aperture-size telescopes across the globe. Third, we present five case studies to illustrate the diversity of scenarios in secure identification of the EM counterpart. We discuss the case of a typical binary, neither beamed nor nearby, and the challenges associated with identifying an EM counterpart at both low and high Galactic latitudes. For the first time, we demonstrate how construction of low-latency GW volumes in conjunction with local universe galaxy catalogs can help solve the problem of false positives. We conclude with strategies that would best prepare us for successfully identifying the elusive EM counterpart of a GW merger

    What to do when things get crowded? Scalable joint analysis of overlapping gravitational wave signals

    Full text link
    The gravitational wave sky is starting to become very crowded, with the fourth science run (O4) at LIGO expected to detect O(100)\mathcal{O}(100) compact object coalescence signals. Data analysis issues start to arise as we look further forwards, however. In particular, as the event rate increases in e.g. next generation detectors, it will become increasingly likely that signals arrive in the detector coincidentally, eventually becoming the dominant source class. It is known that current analysis pipelines will struggle to deal with this scenario, predominantly due to the scaling of traditional methods such as Monte Carlo Markov Chains and nested sampling, where the time difference between analysing a single signal and multiple can be as significant as days to months. In this work, we argue that sequential simulation-based inference methods can solve this problem by breaking the scaling behaviour. Specifically, we apply an algorithm known as (truncated marginal) neural ratio estimation (TMNRE), implemented in the code peregrine and based on swyft. To demonstrate its applicability, we consider three case studies comprising two overlapping, spinning, and precessing binary black hole systems with merger times separated by 0.05 s, 0.2 s, and 0.5 s. We show for the first time that we can recover, with full precision (as quantified by a comparison to the analysis of each signal independently), the posterior distributions of all 30 model parameters in a full joint analysis. Crucially, we achieve this with only ∼15%\sim 15\% of the waveform evaluations that would be needed to analyse even a single signal with traditional methods.Comment: 6 pages. 3 figures. Codes: peregrine is publicly available at https://github.com/PEREGRINE-GW/peregrine/tree/overlapping, swyft is available at https://github.com/undark-lab/swyf

    Radio Counterparts of Compact Binary Mergers detectable in Gravitational Waves: A Simulation for an Optimized Survey

    Get PDF
    Mergers of binary neutron stars and black hole-neutron star binaries produce gravitational-wave (GW) emission and outflows with significant kinetic energies. These outflows result in radio emissions through synchrotron radiation. We explore the detectability of these synchrotron generated radio signals by follow-up observations of GW merger events lacking a detection of electromagnetic counterparts in other wavelengths. We model radio light curves arising from (i) sub-relativistic merger ejecta and (ii) ultra-relativistic jets. The former produces radio remnants on timescales of a few years and the latter produces γ\gamma-ray bursts in the direction of the jet and orphan-radio afterglows extending over wider angles on timescales of weeks. Based on the derived light curves, we suggest an optimized survey at 1.41.4 GHz with five epochs separated by a logarithmic time interval. We estimate the detectability of the radio counterparts of simulated GW-merger events to be detected by advanced LIGO and Virgo by current and future radio facilities. The detectable distances for these GW merger events could be as high as 1 Gpc. 2020--60%60\% of the long-lasting radio remnants will be detectable in the case of the moderate kinetic energy of 3⋅10503\cdot 10^{50} erg and a circum-merger density of 0.1cm−30.1 {\rm cm^{-3}} or larger, while 55--20%20\% of the orphan radio afterglows with kinetic energy of 104810^{48} erg will be detectable. The detection likelihood increases if one focuses on the well-localizable GW events. We discuss the background noise due to radio fluxes of host galaxies and false positives arising from extragalactic radio transients and variable Active Galactic Nuclei and we show that the quiet radio transient sky is of great advantage when searching for the radio counterparts.Comment: 23 pages, 10 figures, accepted for publication in Ap

    A study of the agreement between binary neutron star ejecta models derived from numerical relativity simulations

    Get PDF
    Neutron star mergers have recently become a tool to study extreme gravity, nucleosynthesis, and the chemical composition of the Universe. To date, there has been one joint gravitational and electromagnetic observation of a binary neutron star merger, GW170817, as well as a solely gravitational observation, GW190425. In order to accurately identify and interpret electromagnetic signals of neutron star mergers, better models of the matter outflows generated by these mergers are required. We compare a series of ejecta models to see where they provide strong constraints on the amount of ejected mass expected from a system, and where systematic uncertainties in current models prevent us from reliably extracting information from observed events. We also examine 2396 neutron star equations of state compatible with GW170817 to see whether a given ejecta mass could be reasonably produced with a neutron star of said equation of state, and whether different ejecta models provide consistent predictions. We find that the difference between models is often comparable to or larger than the error generally assumed for these models, implying better constraints on the models are needed. We also note that the extrapolation of outflow models outside of their calibration window, while commonly needed to analyze gravitational wave events, is extremely unreliable and occasionally leads to completely unphysical results.Comment: 12 pages, 5 figure

    Gravitational-wave emission from compact Galactic binaries

    Get PDF
    Compact Galactic binaries where at least one member is a white dwarf or neutron star constitute the majority of individually detectable sources for future low-frequency space-based gravitational-wave (GW) observatories; they also form an unresolved continuum, the dominant Galactic foreground at frequencies below a few mHz. Due to the paucity of electromagnetic observations, the majority of studies of Galactic-binary populations so far have been based on population-synthesis simulations. However, recent surveys have reported several new detections of white-dwarf binaries, providing new constraints for population estimates. In this article, we evaluate the impact of revised local densities of interacting white-dwarf binaries on future GW observations. Specifically: we consider five scenarios that explain these densities with different assumptions on the formation of interacting systems; we simulate corresponding populations of detached and interacting white-dwarf binaries; we estimate the number of individually detectable GW sources and the magnitude of the confusion-noise foreground, as observed by space-based detectors with 5- and 1-Mkm arms. We confirm earlier estimates of thousands of detached-binary detections, but project only few ten to few hundred detections of interacting systems. This reduction is partly due to our assessment of detection prospects, based on the iterative identification and subtraction of bright sources with respect to both instrument and confusion noise. We also confirm earlier estimates for the confusion-noise foreground, except in one scenario that explains smaller local densities of interacting systems with smaller numbers of progenitor detached systems.Comment: 17 pages, 3 figures, 5 tables, version matches the published Astrophysical Journal pape
    • …
    corecore