953 research outputs found

    On Discovering Electromagnetic Emission from Neutron Star Mergers: The Early Years of Two Gravitational Wave Detectors

    Get PDF
    We present the first simulation addressing the prospects of finding an electromagnetic (EM) counterpart to gravitational wave detections (GW) during the early years of only two advanced interferometers. The perils of such a search may have appeared insurmountable when considering the coarse ring-shaped GW localizations spanning thousands of deg^2 using time-of-arrival information alone. We show that leveraging the amplitude and phase information of the predicted GW signal narrows the localization to arcs with a median area of only ~250 deg^2, thereby making an EM search tractable. Based on the locations and orientations of the two LIGO detectors, we find that the GW sensitivity is limited to one polarization and thus to only two sky quadrants. Thus, the rates of GW events with two interferometers is only ~40% of the rate with three interferometers of similar sensitivity. Another important implication of the sky quadrant bias is that EM observatories in North America and Southern Africa would be able to systematically respond to GW triggers several hours sooner than Russia and Chile. Given the larger sky areas and the relative proximity of detected mergers, 1m-class telescopes with very wide-field cameras are well positioned for the challenge of finding an EM counterpart. Identification of the EM counterpart amidst the even larger numbers of false positives further underscores the importance of building a comprehensive catalog of foreground stellar sources, background AGN and potential host galaxies in the local universe.Comment: Submitted to ApJL, 8 pages, 4 figures, 1 tabl

    Numerical simulations of neutron star-black hole binaries in the near-equal-mass regime

    Get PDF
    Simulations of neutron star-black hole (NSBH) binaries generally consider black holes with masses in the range (5−10)M⊙(5-10)M_\odot, where we expect to find most stellar mass black holes. The existence of lower mass black holes, however, cannot be theoretically ruled out. Low-mass black holes in binary systems with a neutron star companion could mimic neutron star-neutron (NSNS) binaries, as they power similar gravitational wave (GW) and electromagnetic (EM) signals. To understand the differences and similarities between NSNS mergers and low-mass NSBH mergers, numerical simulations are required. Here, we perform a set of simulations of low-mass NSBH mergers, including systems compatible with GW170817. Our simulations use a composition and temperature dependent equation of state (DD2) and approximate neutrino transport, but no magnetic fields. We find that low-mass NSBH mergers produce remnant disks significantly less massive than previously expected, and consistent with the post-merger outflow mass inferred from GW170817 for moderately asymmetric mass ratio. The dynamical ejecta produced by systems compatible with GW170817 is negligible except if the mass ratio and black hole spin are at the edge of the allowed parameter space. That dynamical ejecta is cold, neutron-rich, and surprisingly slow for ejecta produced during the tidal disruption of a neutron star : v∼(0.1−0.15)cv\sim (0.1-0.15)c. We also find that the final mass of the remnant black hole is consistent with existing analytical predictions, while the final spin of that black hole is noticeably larger than expected -- up to χBH=0.84\chi_{\rm BH}=0.84 for our equal mass case

    A Unique Multi-Messenger Signal of QCD Axion Dark Matter

    Get PDF
    We propose a multi-messenger probe of QCD axion Dark Matter based on observations of black hole-neutron star binary inspirals. It is suggested that a dense Dark Matter spike may grow around intermediate mass black holes (103−105 M⊙10^{3}-10^{5} \mathrm{\,M_{\odot}}). The presence of such a spike produces two unique effects: a distinct phase shift in the gravitational wave strain during the inspiral and an enhancement of the radio emission due to the resonant axion-photon conversion occurring in the neutron star magnetosphere throughout the inspiral and merger. Remarkably, the observation of the gravitational wave signal can be used to infer the Dark Matter density and, consequently, to predict the radio emission. We study the projected reach of the LISA interferometer and next-generation radio telescopes such as the Square Kilometre Array. Given a sufficiently nearby system, such observations will potentially allow for the detection of QCD axion Dark Matter in the mass range 10−7 eV10^{-7}\,\mathrm{eV} to 10−5 eV10^{-5}\,\mathrm{eV}.Comment: 5 pages, 3 figures. Appendix added with additional figures. Updated to published versio

    Why Developing Countries Should Adopt Intermediate Exchange Rate Regimes: Examining Brazil’s Experience

    Get PDF

    Multimessenger Universe with Gravitational Waves from Binaries

    Get PDF
    Future GW detector networks and EM observatories will provide a unique opportunity to observe the most luminous events in the Universe involving matter in extreme environs. They will address some of the key questions in physics and astronomy: formation and evolution of compact binaries, sites of formation of heavy elements and the physics of jets.Comment: 11 pages, two tables, White Paper submitted to the Astro-2020 (2020 Astronomy and Astrophysics Decadal Survey) by GWIC-3G Science Case Team (GWIC: Gravitational-Wave International Committee

    Measuring the nuclear equation of state with neutron star-black hole mergers

    Full text link
    Gravitational-wave (GW) observations of neutron star-black hole (NSBH) mergers are sensitive to the nuclear equation of state (EOS). Using realistic simulations of NSBH mergers, incorporating both GW and electromagnetic (EM) selection to ensure sample purity, we find that a GW detector network operating at O5-sensitivities will constrain the radius of a 1.4 M⊙1.4~M_{\odot} NS and the maximum NS mass with 1.6%1.6\% and 13%13\% precision, respectively. The results demonstrate strong potential for insights into the nuclear EOS, provided NSBH systems are robustly identified.Comment: 9 pages, 4 Figures. Submitted. Comments welcome

    Gravitational radiation reaction in the equations of motion of compact binaries to 3.5 post-Newtonian order

    Full text link
    We compute the radiation reaction force on the orbital motion of compact binaries to the 3.5 post-Newtonian (3.5PN) approximation, i.e. one PN order beyond the dominant effect. The method is based on a direct PN iteration of the near-zone metric and equations of motion of an extended isolated system, using appropriate ``asymptotically matched'' flat-space-time retarded potentials. The formalism is subsequently applied to binary systems of point particles, with the help of the Hadamard self-field regularisation. Our result is the 3.5PN acceleration term in a general harmonic coordinate frame. Restricting the expression to the centre-of-mass frame, we find perfect agreement with the result derived in a class of coordinate systems by Iyer and Will using the energy and angular momentum balance equations.Comment: 28 pages, references added, to appear in Classical and Quantum Gravit
    • …
    corecore