853 research outputs found

    Polaron Induced Deformations in Carbon Nanotubes

    Full text link
    We compute for the first time full elastic deformations, as well as length, of self-trapped electronic states in carbon nanotubes of general radius and chirality, within the unifying framework of a recently introduced two field model for electromechanics of carbon nano-structures. We find that deformations are highly non monotonic in the chiral angle, whereas the length of the polaron is not. Applications include nano-mechanical devices as electrically or optically driven nano-actuators.Comment: 4 Pages, 1 Figure Phys Rev B Brief Repor

    Sub two-cycle soliton-effect pulse compression at 800 nm in Photonic Crystal Fibers

    Get PDF
    The possibility of soliton self-compression of ultrashort laser pulses down to the few-cycle regime in photonic crystal fibers is numerically investigated. We show that efficient sub-two-cycle temporal compression of nanojoule-level 800 nm pulses can be achieved by employing short (typically 5-mm-long) commercially available photonic crystal fibers and pulse durations of around 100 fs, regardless of initial linear chirp, and without the need of additional dispersion compensation techniques. We envisage applications in a new generation of compact and efficient sub-two cycle laser pulse sources.Comment: 16 pages, 6 figure

    An amino acid-defined diet impairs tumour growth in mice by promoting endoplasmic reticulum stress and mTOR inhibition

    Get PDF
    Objective: Profound metabolic alterations characterize cancer development and, beyond glucose addiction, amino acid (AA) dependency is now recognized as a hallmark of tumour growth. Therefore, targeting the metabolic addiction of tumours by reprogramming their substrate utilization is an attractive therapeutic strategy. We hypothesized that a dietary approach targeted to stimulate oxidative metabolism could reverse the metabolic inflexibility of tumours and represent a proper adjuvant therapy. Methods: We measured tumour development in xenografted mice fed with a designer, casein-deprived diet enriched in free essential amino acids (EAAs; SFA-EAA diet), or two control isocaloric, isolipidic, and isonitrogenous diets, identical to the SFA-EAA diet except for casein presence (SFA diet), or casein replacement by the free AA mixture designed on the AA profile of casein (SFA-CAA diet). Moreover, we investigated the metabolic, biochemical, and molecular effects of two mixtures that reproduce the AA composition of the SFA-EAA diet (i.e., EAAm) and SFA-CAA diet (i.e., CAAm) in diverse cancer and non-cancer cells. Results: The SFA-EAA diet reduced tumour growth in vivo, promoted endoplasmic reticulum (ER) stress, and inhibited mechanistic/mammalian target of rapamycin (mTOR) activity in the tumours. Accordingly, in culture, the EAAm, but not the CAAm, activated apoptotic cell death in cancer cells without affecting the survival and proliferation of non-cancer cells. The EAAm increased branched-chain amino acid (BCAA) oxidation and decreased glycolysis, ATP levels, redox potential, and intracellular content of selective non-essential amino acids (NEAA) in cancer cells. The EAAm-induced NEAA starvation activated the GCN2-ATF4 stress pathway, leading to ER stress, mTOR inactivation, and apoptosis in cancer cells, unlike non-cancer cells. Conclusion: Together, these results confirm the efficacy of specific EAA mixtures in promoting cancer cells’ death and suggest that manipulation of dietary EAA content and profile could be a valuable support to the standard chemotherapy for specific cancers

    An amino acid mixture, enriched with Krebs cycle intermediates, enhances extracellular matrix gene expression in cultured human fibroblasts

    Get PDF
    : In the human body, the skin is one of the organs most affected by the aging process. Nutritional approaches aimed to counteract the age-induced decline of extracellular matrix (ECM) deposition could be a valuable tool to decrease the degenerative processes underlying skin aging. Here, we investigated the ability of a six-amino acid plus hyaluronic acid (6AAH) formulation enriched with tricarboxylic acid (TCA) intermediates to stimulate ECM gene expression. To this aim, human BJ fibroblasts were treated with 6AAH alone or plus succinate or malate alone or succinate plus malate (6AAHSM), and mRNA levels of several ECM markers were evaluated. 6AAHSM increased the expression of all the ECM markers significantly above 6AAH alone or plus only succinate or malate. Furthermore, in an in vitro oxidative damage model, 6AAHSM blunted the hydrogen peroxide-induced decline in ECM gene expression. Our data suggest that feeding cells with 6AAH enriched with TCAs could efficiently be employed as a non-pharmacological approach for counteracting skin aging

    An original amino acid formula favours in vitro corneal epithelial wound healing by promoting Fn1, ITGB1, and PGC-1α expression

    Get PDF
    Corneal disorders are frequent, involving most diabetic patients; among its manifestations, they include delayed wound healing. Since maintenance of mitochondrial homeostasis is fundamental for the cell, stimulation of mitochondrial biogenesis represents a unique therapeutic tool for preventing and treating disorders with a deficit in energy metabolism. We have recently demonstrated that a branched-chain amino acid (BCAA)-enriched mixture (BCAAem) supported mitochondrial biogenesis in cardiac and skeletal muscle, reduced liver damage caused by alcohol, and prevented the doxorubicin-dependent mitochondrial damage in cardiomyocytes. The present study aimed to investigate a new amino acid mixture, named six amino acids (6AA), to promote corneal epithelial wound healing by regulating mitochondrial biogenesis. A murine epithelium cell line (TKE2) exposed to this mixture showed increased mitochondrial biogenesis markers, fibronectin 1 (Fn1) and integrin beta 1 (ITGB1) involved in extracellular matrix synthesis and cell migration. Most importantly, the 6AA mixture completely restored the wound in scratch assays, confirming the potential of this new formula in eye disorders like keratopathy. Moreover, our results demonstrate for the first time that peroxisome proliferator-receptor γ coactivator 1 α (PGC-1α) is expressed in TKE2 cells, which controls mitochondrial function and corneal repair process. These results could be relevant for the treatment mainly focused on corneal re-epithelialisation

    Attosecond spectroscopy of bio-chemically relevant molecules

    Get PDF
    Understanding the role of the electron dynamics in the photochemistry of bio-chemically relevant molecules is key to getting access to the fundamental physical processes leading to damage, mutation and, more generally, to the alteration of the final biological functions. Sudden ionization of a large molecule has been proven to activate a sub-femtosecond charge flow throughout the molecular backbone, purely guided by electronic coherences, which could ultimately affect the photochemical response of the molecule at later times. We can follow this ultrafast charge flow in real time by exploiting the extreme time resolution provided by attosecond light sources. In this work recent advances in attosecond molecular physics are presented with particular focus on the investigation of bio-relevant molecules

    Direct entropy determination and application to artificial spin ice

    Full text link
    From thermodynamic origins, the concept of entropy has expanded to a range of statistical measures of uncertainty, which may still be thermodynamically significant. However, laboratory measurements of entropy continue to rely on direct measurements of heat. New technologies that can map out myriads of microscopic degrees of freedom suggest direct determination of configurational entropy by counting in systems where it is thermodynamically inaccessible, such as granular and colloidal materials, proteins and lithographically fabricated nanometre-scale arrays. Here, we demonstrate a conditional-probability technique to calculate entropy densities of translation-invariant states on lattices using limited configuration data on small clusters, and apply it to arrays of interacting nanometre-scale magnetic islands (artificial spin ice). Models for statistically disordered systems can be assessed by applying the method to relative entropy densities. For artificial spin ice, this analysis shows that nearest-neighbour correlations drive longer-range ones.Comment: 10 page
    • …
    corecore