869 research outputs found
Positive pion absorption on 3He using modern trinucleon wave functions
We study pion absorption on 3He employing trinucleon wave functions
calculated from modern realistic NN interactions (Paris, CD Bonn). Even though
the use of the new wave functions leads to a significant improvement over older
calculations with regard to both cross section and polarization data, there are
hints that polarization data with quasifree kinematics cannot be described by
just two-nucleon absorption mechanisms.Comment: 14 pages, 6 figure
Porous structure of thick fiber webs
The bulk properties and stochastic pore geometry of finite-thickness fiber webs are studied using a realistic model for the sedimentation of flexible fibers [K. J. Niskanen and M. J. Alava, Phys. Rev. Lett. 73, 3475 (1994)]. The resulting web structure is controlled by a dimensionless number F=Tfwf/tf, where Tf is fiber flexibility, wf fiber width, and tf fiber thickness. The fiber length (≫wf,tf) is irrelevant. With increasing coverage c̄, a crossover occurs at c̄=c0≈1+2F from a vacancy-controlled two-dimensional (2D) structure to a pore-controlled 3D structure. The 3D structures are isomorphic in that the pore dimensions are exponentially distributed, with the decay rate dependent only on F.Peer reviewe
Two-body Pion Absorption on at Threshold
It is shown that a satisfactory explanation of the ratio of the rates of the
reactions and for stopped pions is obtained
once the effect of the short range two-nucleon components of the axial charge
operator for the nuclear system is taken into account. By employing realistic
models for the nucleon-nucleon interaction in the construction of these
components of the axial charge operator, the predicted ratios agree with the
empirical value to within 10-20\%.Comment: 19, UHPHYDOR-94-
Survey of charge symmetry breaking operators for dd -> alpha pi0
The charge-symmetry-breaking amplitudes for the recently observed d d ->
alpha pi0 reaction are investigated. Chiral perturbation theory is used to
classify and identify the leading-order terms. Specific forms of the related
one- and two-body tree level diagrams are derived. As a first step toward a
full calculation, a few tree-level two-body diagrams are evaluated at each
considered order, using a simplified set of d and alpha wave functions and a
plane-wave approximation for the initial dd state. The leading-order
pion-exchange term is shown to be suppressed in this model because of poor
overlap of the initial and final states. The higher-order one-body and
short-range (heavy-meson-exchange) amplitudes provide better matching between
the initial and final states and therefore contribute significantly and
coherently to the cross section. The consequences this might have for a full
calculation, with realistic wave functions and a more complete set of
amplitudes, are discussed.Comment: REVTeX 4, 35 pages, 8 eps figures, submitted to PR
Failure of planar fiber networks
We study the failure of planar random fiber networks with computer simulations. The networks are grown by adding flexible fibers one by one on a growing deposit [K. J. Niskanen and M. J. Alava, Phys. Rev. Lett. 73, 3475 (1994)], a process yielding realistic three dimensional network structures. The network thus obtained is mapped to an electrical analogue of the elastic problem, namely to a random fuse network with separate bond elements for the fiber-to-fiber contacts. The conductivity of the contacts (corresponding to the efficiency of stress transfer between fibers) is adjustable. We construct a simple effective medium theory for the current distribution and conductivity of the networks as a function of intra-fiber current transfer efficiency. This analysis compares favorably with the computed conductivity and with the fracture properties of fiber networks with varying fiber flexibility and network thickness. The failure characteristics are shown to obey scaling behavior, as expected of a disordered brittlematerial, which is explained by the high current end of the current distribution saturating in thick enough networks. For bond breaking, fracture load and strain can be estimated with the effective medium theory. For fiber breaking, we find the counter-intuitive result that failure is more likely to nucleate far from surfaces, as the stress is transmitted more effectively to the fibers in the interior.Peer reviewe
Spin observables of the reactions NN -> DeltaN and pd -> Delta (pp)(1S0) in collinear kinematics
A general formalism for double and triple spin-correlations of the reaction
NN -> DeltaN is developed for the case of collinear kinematics. A complete
polarization experiment allowing to reconstruct all of the four amplitudes
describing this process is suggested. Furthermore, the spin observables of the
inelastic charge-exchange reaction pd -> Delta^0(pp)(1S0) are analyzed in
collinear kinematics within the single pN scattering mechanism involving the
subprocess pn -> Delta^0p. The full set of spin observables related to the
polarization of one or two initial particles and one final particle is obtained
in terms of three invariant amplitudes of the reaction pd -> Delta (pp)(1S0)
and the transition form factor d->(pp)(1S0). A complete polarization experiment
for the reaction pd -> Delta^0(pp)(1S0) is suggested which allows one to
determine three independent combinations of the four amplitudes of the
elementary subprocess NN -> DeltaN.Comment: 12 pages, 1 figur
Eta physics at threshold
The production of eta and eta-prime mesons in elementary nucleon-nucleon
collisions has been investigated at the synchrotrons CELSIUS, COSY and SATURNE.
The magnitude and energy dependence of the total cross section as well as the
occupation distribution of the phase space serve as observables for
investigating the mechanisms underlying the production processes and the
interaction of mesons with nucleons. The precise data on the eta and eta-prime
creation via the pp --> pp eta(eta-prime) reactions allowed to settle the
general features of the eta and eta-prime meson production and revealed the
sensitivity of the mentioned observables to the nucleon-nucleon-meson final
state interaction. The particular production properties, like for example the
determination of the dominating exchange processes which lead to the excitation
of the S_11 nucleon isobar in the case of eta creation, must be established by
confrontation with other observables. The present status of this investigation
with an emphasis on the results of the COSY-11 collaboration is briefly
presented. The available data are interpreted in view of the production
mechanism and the meson-nucleon interaction.Comment: 3 pages, 3 figures, Presented at Conference on Quarks and Nuclear
Physics (QNP 2002), Julich, Germany, 9-14 Jun 200
Virtual-pion and two-photon production in pp scattering
Two-photon production in pp scattering is proposed as a means of studying
virtual-pion emission. Such a process is complementary to real-pion emission in
pp scattering. The virtual-pion signal is embedded in a background of
double-photon bremsstrahlung. We have developed a model to describe this
background process and show that in certain parts of phase space the
virtual-pion signal gives significant contribution. In addition, through
interference with the two-photon bremsstrahlung background, one can determine
the relative phase of the virtual-pion process
Holonomic quantum gates: A semiconductor-based implementation
We propose an implementation of holonomic (geometrical) quantum gates by
means of semiconductor nanostructures. Our quantum hardware consists of
semiconductor macroatoms driven by sequences of ultrafast laser pulses ({\it
all optical control}). Our logical bits are Coulomb-correlated electron-hole
pairs (excitons) in a four-level scheme selectively addressed by laser pulses
with different polarization. A universal set of single and two-qubit gates is
generated by adiabatic change of the Rabi frequencies of the lasers and by
exploiting the dipole coupling between excitons.Comment: 10 Pages LaTeX, 10 Figures include
Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi
DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi
- …