11 research outputs found

    Activation and Differentiation of Autoreactive B-1 Cells by Interleukin 10 Induce Autoimmune Hemolytic Anemia in Fas-deficient Antierythrocyte Immunoglobulin Transgenic Mice

    Get PDF
    The Fas (CD95) gene is among critical genetic factors in some autoimmune diseases, which are characterized by autoantibody (autoAb) productions. In mice, mutations in the Fas gene cause lymphoproliferation (lpr) which predominantly develops glomerulonephritis, whereas the mutations in human cause autoimmune lymphoproliferative syndrome (ALPS) characterized by autoimmune hemolytic anemia (AIHA) and thrombocytopenia. Although the mechanism of antinuclear Ab in Fas-deficient background has been well characterized, that of antierythrocyte Ab production in ALPS has been still unclear. To investigate this mechanism, we developed a mouse line by crossing the antierythrocyte antibody transgenic mice (H+L6 mice) and Fas-deficient mice. Although Fas deficiency did not break tolerance of autoreactive B-2 cells in H+L6 mice, autoreactive B-1 cells in Fas-deficient H+L6 homozygous mice became activated and differentiated into autoAb-producing cells in mesenteric lymph nodes and lamina propria of intestine, resulting in severe anemia. In addition, serum levels of interleukin (IL)-10 significantly increased in Fas−/− × H+L6 homozygous mice and administration of anti–IL-10 Ab prevented exacerbation of autoAb production and AIHA. These results suggest that activation of B-1 cells is responsible for induction of AIHA in Fas-deficient condition and that IL-10 plays a critical role in terminal differentiation of B-1 cells in these mice

    Extensive Delayed Brain Atrophy after Resuscitation in a Patient with Multiple System Atrophy

    No full text
    Brain magnetic resonance imaging (MRI) of multiple system atrophy (MSA) shows atrophy in the cerebrum, cerebellum, and brainstem. It is also characterized by specific patterns such as hyperintense lateral putaminal rim. MRI of hypoxic encephalopathy shows atrophy mainly in the gray matter, and laminar necrosis in the cerebral cortex is often observed. Here, we report an MSA patient damaged by hypoxic insult and resuscitated after 18-min cardiac arrest. The brain of the patient developed severe atrophy within a period of 10 months. Furthermore, brain atrophy was observed in the white and gray matter, which preserved the brain atrophy pattern in MSA. We assume that alpha-synuclein oligomerization is involved in the neural cell death and brain atrophy. It might have caused further neural cell death in the brain damaged by hypoxia. Alpha-synuclein, which is involved in the pathogenesis of MSA, is suggested to be a prion. Misfolded alpha-synuclein may propagate through cell-to-cell transmission and cause wide pathological change, visible as atrophied MR imaging
    corecore