3,659 research outputs found

    Development of displacement- and frequency-noise-free interferometer in 3-D configuration for gravitational wave detection

    Get PDF
    The displacement- and frequency-noise-free interferometer (DFI) is a multiple laser interferometer array for gravitational wave detection free from both the displacement noise of optics and laser frequency noise. So far, partial experimental demonstrations of DFI have been done in 2-D table top experiments. In this paper, we report the complete demonstration of a 3-D DFI. The DFI consists of four Mach-Zehnder interferometers with four mirrors and two beamsplitters. The displacement noises both of mirrors and beamsplitters were suppressed by up to 40 dB. The non-vanishing DFI response to a gravitational wave was successfully confirmed using multiple electro-optic modulators and computing methods

    Spin injection from EuS/Co multilayers into GaAs detected by polarized electroluminescence

    Get PDF
    We report on the successful spin injection from EuS/Co multilayers into (100) GaAs at low temperatures. The spin injection was verified by means of polarized electroluminescence (EL) emitted from AlGaAs/GaAs-based spin-light-emitting diodes in zero external magnetic field. Spin-polarized electrons were injected from prototype EuS/Co spin injector multilayers. The use of semiconducting and ferromagnetic EuS circumvents the impedance mismatch. The EL was measured in side emission with and without an external magnetic field. A circular polarization of 5% at 8 K and 0 T was observed. In view of the rather rough interface between the GaAs substrate and first EuS layer, improvement of the interface quality is expected to considerably enhance the injected electron spin polarization

    Reheating after f(R) inflation

    Full text link
    The reheating dynamics after the inflation induced by R2R^2-corrected f(R)f(R) model is considered. To avoid the complexity of solving the fourth order equations, we analyze the inflationary and reheating dynamics in the Einstein frame and its analytical solutions are derived. We also perform numerical calculation including the backreaction from the particle creation and compare the results with the analytical solutions. Based on the results, observational constraints on the model are discussed.Comment: 16 pages, 11 figure

    The experimental plan of displacement- and frequency-noise free laser interferometer

    Get PDF
    We present the partial demonstration of displacement- and laser-noise free interferometer (DFI) and the next experimental plan to examine the complete configuration. A part of the full implementation of DFI has been demonstrated to confirm the cancellation of beamsplitter displacements. The displacements were suppressed by about two orders of magnitude. The aim of the next experiment is to operate the system and to confirm the cancellation of all displacement noises, while the gravitational wave (GW) signals survive. The optical displacements will be simulated by electro-optic modulators (EOM). To simulate the GW contribution to laser lights, we will use multiple EOMs

    Demonstration of displacement-noise-free interferometry using bi-directional Mach–Zehnder interferometers

    Get PDF
    We have demonstrated displacement- and frequency-noise-free laser interferometry (DFI) by partially implementing a recently proposed optical configuration using bi-directional Mach–Zehnder interferometers (MZIs). This partial implementation, the minimum necessary to be called DFI, has confirmed the essential feature of DFI: the combination of two MZI signals can be carried out in a way that cancels the displacement noise of the mirrors and beam splitters while maintaining gravitational-wave signals. The attained maximum displacement noise suppression was 45 dB
    corecore