3,197 research outputs found

    VLBI Observations of Water Masers in the Circumstellar Envelope of IRC+60169

    Full text link
    Water masers around an AGB star, IRC+60169, were observed at four epochs using the Japanese VLBI networks. The distribution of the maser features is limited in a thick-shell region, which has inner and outer expansion velocities of 7 km/s and 14 km/s at radii of 25 mas and 120 mas, respectively. The distribution of the red-shifted features exhibits a ring-like structure, the diameter of which is 30 mas, and corresponds to the inner radius of the maser shell. This implies that dense gas around the star obscures red-shifted emission. Although a position--radial velocity diagram for the maser features is consistent with a spherical shell model, the relative proper motions do not indicate an expansion motion of the shell. A remarkable property has been found that is a possible periodic change of the alignment pattern of water maser spots.Comment: 9 pages including 7 figures, to appear in PASJ, Vol. 54, No.

    Real-time simulation of jet engines with digital computer. 1: Fabrication and characteristics of the simulator

    Get PDF
    The fabrication and performance of a real time jet engine simulator using a digital computer are discussed. The use of the simulator in developing the components and control system of a jet engine is described. Comparison of data from jet engine simulation tests with actual engine tests was conducted with good agreement

    Efficient implementation of the nonequilibrium Green function method for electronic transport calculations

    Get PDF
    An efficient implementation of the nonequilibrium Green function (NEGF) method combined with the density functional theory (DFT) using localized pseudo-atomic orbitals (PAOs) is presented for electronic transport calculations of a system connected with two leads under a finite bias voltage. In the implementation, accurate and efficient methods are developed especially for evaluation of the density matrix and treatment of boundaries between the scattering region and the leads. Equilibrium and nonequilibrium contributions in the density matrix are evaluated with very high precision by a contour integration with a continued fraction representation of the Fermi-Dirac function and by a simple quadratureon the real axis with a small imaginary part, respectively. The Hartree potential is computed efficiently by a combination of the two dimensional fast Fourier transform (FFT) and a finite difference method, and the charge density near the boundaries is constructed with a careful treatment to avoid the spurious scattering at the boundaries. The efficiency of the implementation is demonstrated by rapid convergence properties of the density matrix. In addition, as an illustration, our method is applied for zigzag graphene nanoribbons, a Fe/MgO/Fe tunneling junction, and a LaMnO3/_3/SrMnO3_3 superlattice, demonstrating its applicability to a wide variety of systems.Comment: 20 pages, 11 figure

    Type-1.5 Superconductors

    Full text link
    We demonstrate the existence of a novel superconducting state in high quality two-component MgB2 single crystalline superconductors where a unique combination of both type-1 (kappa_1 0.707) superconductor conditions is realized for the two components of the order parameter. This condition leads to a vortex-vortex interaction attractive at long distances and repulsive at short distances, which stabilizes unconventional stripe- and gossamer-like vortex patterns that we have visualized in this type-1.5 superconductor using Bitter decoration and also reproduced in numerical simulations.Comment: accepted in Phys. Rev. Let

    Static and Dynamic Phases for Vortex Matter with Attractive Interactions

    Full text link
    Exotic vortex states with long range attraction and short range repulsion have recently been proposed to arise in superconducting hybrid structures and multi-band superconductors. Using large scale simulations we examine the static and dynamic properties of such vortex states interacting with random and periodic pinning. In the absence of pinning this system does not form patterns but instead completely phase separates. When pinning is present there is a transition from inhomogeneous to homogeneous vortex configurations similar to a wetting phenomenon. Under an applied drive, a dynamical dewetting process can occur from a strongly pinned homogeneous state into pattern forming states. We show that a signature of the exotic vortex interactions under transport measurements is a robust double peak feature in the differential conductivity curves.Comment: 5 pages, 4 postscript figure

    High energy electrons beyond 100 GEV observed by emulsion chamber

    Get PDF
    Much efforts have been expended to observe the spectrum of electrons in the high energy region with large area emulsion chambers exposed at balloon altitudes, and now 15 electrons beyond 1 TeV have been observed. The observed integral flux at 1 TeV is (3.24 + or - 0.87)x10(-5)/sq m sec sr. The statistics of the data around a few hundred GeV are also improving by using new shower detecting films of high sensitivity. The astrophysical significance of the observed spectrum are discussed for the propagation of electrons based on the leaky box and the nested leaky box model

    Quasi-Particle Spectra, Charge-Density-Wave, Superconductivity and Electron-Phonon Coupling in 2H-NbSe2

    Full text link
    High-resolution photoemission has been used to study the electronic structure of the charge density wave (CDW) and superconducting (SC) dichalcogenide, 2H- NbSe2. From the extracted self-energies, important components of the quasiparticle (QP) interactions have been identified. In contrast to previously studied TaSe2, the CDW transition does not affect the electronic properties significantly. The electron-phonon coupling is identified as a dominant contribution to the QP self-energy and is shown to be very anisotropic (k-dependent) and much stronger than in TaSe2.Comment: 4 pages, 3 figures, minor changes, to appear in PR

    Lessons From The Molecular Biology Of Neonatal Hyperbilirubinaemia.

    Get PDF
    Neonatal jaundice is the most common condition requiring medical attention in the newborn period. It has been classically attributed to a number of more or less common causes. The causes are classically divided in two main groups. The first group is comprising of conditions associated with an increase in break down of red blood cells such as Rhesus incompatibility, ABO blood group incompatibility, G6PD deficiency, birth trauma and polycythaemia. A second group consists of conditions in which the excretion of bilirubin is diminished such as breast feeding jaundice, breast milk jaundice, Gilbert syndrome or the more severe Crigler Najjar syndrome. Many babies however get jaundice
    corecore