89 research outputs found

    Efficient modelling of 3-d finite element mesh formation with use of 3-d topographic survey

    Get PDF
    In this decade, 3-dimensional topographic survey has been developed by using the UAV as like drones. With the technique, the complete topographies of the geo-structures can be measured. Although the accurate shapes of the geo-structures can be obtained, the numerical methods as like the finite element method is are not related to the 3-dimensional survey directly. In this research, the finite mesh modelling technique with use of the 3-D topographic survey is developed. The models of the earth-fill embankments formed from measured 3-D data are introduced as the examples

    Identification of Spatial Distribution of Permeability in Dikes by CPTs

    Get PDF
    In this study, the spatial variability of the strength and permeability inside and underneath a river dike are addressed. Cone penetration tests (CPTs) were conducted at the river dike site, which has piping histries. In addition, CPTs were conducted in the laboratory as model tests on soil sampled from the river dike site, and permeability tests were also conducted on the same samples. Based on the laboratory tests, the relationship between the CPT results, which include the tip resistance, the side friction, and the pore pressure, and the permeability is derived. The relationship is applied to the in-situ test results. In conclusion, the spatial variability of the strength and permeability of the test site is evaluated with a geostatistical simulation technique

    Amino acid sequence of heat-stable enterotoxin produced by Vibrio cholerae non-01

    Get PDF
    AbstractThe amino acid sequence of heat-stable enterotoxin, produced by Vibrio cholerae non-01 and isolated from its culture supernatant, was determined by both Edman degradation of native and reductively carboxy-methylated enterotoxin and also a combination of fast atom bombardment mass spectrometry and carboxy-peptidase Y digestion of native enterotoxin to be as follows: Ile-Asp-Cys-Cys-Glu-Ile-Cys-Cys-Asn-Pro-Ala-Cys-Phe-Gly-Cys-Leu-Asn. This sequence is very similar, but not identical, to those of heat-stable enterotoxins produced by enterotoxigenic Escherichia coli and Yersinia enterocolitica

    Direct Electron Transfer Reactions of Enzymes at Carbon Nanotubes Synthesized on an Electrode Surface

    Get PDF
    Nagasaki Symposium on Nano-Dynamics 2008 (NSND2008) 平成20年1月29日(火)於長崎大学 Poster Presentatio

    Enterokinase and IAV Infection

    Get PDF
    Cleavage and activation of hemagglutinin (HA) by trypsin-like proteases in influenza A virus (IAV) are essential prerequisites for its successful infection and spread. In host cells, some transmembrane serine proteases such as TMPRSS2, TMPRSS4 and HAT, along with plasmin in the bloodstream, have been reported to cleave the HA precursor (HA0) molecule into its active forms, HA1 and HA2. Some trypsinogens can also enhance IAV proliferation in some cell types (e.g., rat cardiomyoblasts). However, the precise activation mechanism for this process is unclear, because the expression level of the physiological activator of the trypsinogens, the TMPRSS15 enterokinase, is expected to be very low in such cells, with the exception of duodenal cells. Here, we show that at least two variant enterokinases are expressed in various human cell lines, including A549 lung-derived cells. The exogenous expression of these enterokinases was able to enhance the proliferation of IAV in 293T human kidney cells, but the proliferation was reduced by knocking down the endogenous enterokinase in A549 cells. The enterokinase was able to enhance HA processing in the cells, which activated trypsinogen in vitro and in the IAV-infected cells also. Therefore, we conclude that enterokinase plays a role in IAV infection and proliferation by activating trypsinogen to process viral HA in human cell lines

    Evidence for phosphorylation of rat liver glucose-regulated protein 58, GRP58/ERp57/ER-60, induced by fasting and leptin

    Get PDF
    AbstractGlucose-regulated protein 58 (GRP58)-like immunoreactivity in rat liver obtained in the evening or after fasting underwent an electrophoretic band-shift, which disappeared after phosphatase-treatment. Since mass spectrometric analysis raised a possibility that Ser150 of GRP58 is phosphorylated, an antibody against the phosphoserine150 GRP58 was generated. Immunoreactivity to this antibody was increased in the evening and after fasting. Since GRP58 was shown to interact with signal transducer and activator of transduction 3 (STAT3), a leptin-related protein, the effect of leptin was examined. Immunoreactivity to the anti-phosphoGRP58 antibody was markedly elevated after the leptin injection, indicating that Ser150 of GRP58 is phosphorylated after fasting and leptin-treatment

    Targeted reversion of induced pluripotent stem cells from patients with human cleidocranial dysplasia improves bone regeneration in a rat calvarial bone defect model

    Get PDF
    BackgroundRunt-related transcription factor 2 (RUNX2) haploinsufficiency causes cleidocranial dysplasia (CCD) which is characterized by supernumerary teeth, short stature, clavicular dysplasia, and osteoporosis. At present, as a therapeutic strategy for osteoporosis, mesenchymal stem cell (MSC) transplantation therapy is performed in addition to drug therapy. However, MSC-based therapy for osteoporosis in CCD patients is difficult due to a reduction in the ability of MSCs to differentiate into osteoblasts resulting from impaired RUNX2 function. Here, we investigated whether induced pluripotent stem cells (iPSCs) properly differentiate into osteoblasts after repairing the RUNX2 mutation in iPSCs derived from CCD patients to establish normal iPSCs, and whether engraftment of osteoblasts derived from properly reverted iPSCs results in better regeneration in immunodeficient rat calvarial bone defect models.MethodsTwo cases of CCD patient-derived induced pluripotent stem cells (CCD-iPSCs) were generated using retroviral vectors (OCT3/4, SOX2, KLF4, and c-MYC) or a Sendai virus SeVdp vector (KOSM302L). Reverted iPSCs were established using programmable nucleases, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-derived RNA-guided endonucleases, to correct mutations in CCD-iPSCs. The mRNA expressions of osteoblast-specific markers were analyzed using quantitative reverse-transcriptase polymerase chain reaction. iPSCs-derived osteoblasts were transplanted into rat calvarial bone defects, and bone regeneration was evaluated using microcomputed tomography analysis and histological analysis.ResultsMutation analysis showed that both contained nonsense mutations: one at the very beginning of exon 1 and the other at the initial position of the nuclear matrix-targeting signal. The osteoblasts derived from CCD-iPSCs (CCD-OBs) expressed low levels of several osteoblast differentiation markers, and transplantation of these osteoblasts into calvarial bone defects created in rats with severe combined immunodeficiency showed poor regeneration. However, reverted iPSCs improved the abnormal osteoblast differentiation which resulted in much better engraftment into the rat calvarial bone defect.ConclusionsTaken together, these results demonstrate that patient-specific iPSC technology can not only provide a useful disease model to elucidate the role of RUNX2 in osteoblastic differentiation but also raises the tantalizing prospect that reverted iPSCs might provide a practical medical treatment for CCD

    Generation of Transgenic Cynomolgus Monkeys Overexpressing the Gene for Amyloid-β Precursor Protein.

    Get PDF
    Alzheimer\u27s disease (AD) is the most common cause of dementia and understanding its pathogenesis should lead to improved therapeutic and diagnostic methods. Although several groups have developed transgenic mouse models overexpressing the human amyloid-β precursor protein (APP) gene with AD mutations, with and without presenilin mutations, as well as APP gene knock-in mouse models, these animals display amyloid pathology but do not show neurofibrillary tangles or neuronal loss. This presumably is due to differences between the etiology of the aged-related human disease and the mouse models. Here we report the generation of two transgenic cynomolgus monkeys overexpressing the human gene for APP with Swedish, Artic, and Iberian mutations, and demonstrated expression of gene tagged green fluorescent protein marker in the placenta, amnion, hair follicles, and peripheral blood. We believe that these nonhuman primate models will be very useful to study the pathogenesis of dementia and AD. However, generated Tg monkeys still have some limitations. We employed the CAG promoter, which will promote gene expression in a non-tissue specific manner. Moreover, we used transgenic models but not knock-in models. Thus, the inserted transgene destroys endogenous gene(s) and may affect the phenotype(s). Nevertheless, it will be of great interest to determine whether these Tg monkeys will develop tauopathy and neurodegeneration similar to human AD

    Sequential therapies after atezolizumab plus bevacizumab or lenvatinib first-line treatments in hepatocellular carcinoma patients

    Get PDF
    Introduction: The aim of this retrospective proof-of-concept study was to compare different second-line treatments for patients with hepatocellular carcinoma and progressive disease (PD) after first-line lenvatinib or atezolizumab plus bevacizumab.Materials and methods: A total of 1381 patients had PD at first-line therapy. 917 patients received lenvatinib as first-line treatment, and 464 patients atezolizumab plus bevacizumab as first-line.Results: 49.6% of PD patients received a second-line therapy without any statistical difference in overall survival (OS) between lenvatinib (20.6 months) and atezolizumab plus bev-acizumab first-line (15.7 months; p = 0.12; hazard ratio [HR] = 0.80). After lenvatinib first-line, there wasn't any statistical difference between second-line therapy subgroups (p = 0.27; sorafenib HR: 1; immunotherapy HR: 0.69; other therapies HR: 0.85). Patients who under-went trans-arterial chemo-embolization (TACE) had a significative longer OS than patients who received sorafenib (24.7 versus 15.8 months, p < 0.01; HR = 0.64). After atezolizumab plus bevacizumab first-line, there was a statistical difference between second-line therapy subgroups (p < 0.01; sorafenib HR: 1; lenvatinib HR: 0.50; cabozantinib HR: 1.29; other therapies HR: 0.54). Patients who received lenvatinib (17.0 months) and those who under-went TACE (15.9 months) had a significative longer OS than patients treated with sorafenib (14.2 months; respectively, p = 0.01; HR = 0.45, and p < 0.05; HR = 0.46).Conclusion: Approximately half of patients receiving first-line lenvatinib or atezolizumab plus bevacizumab access second-line treatment. Our data suggest that in patients progressed to atezolizumab plus bevacizumab, the systemic therapy able to achieve the longest survival is lenvatinib, while in patients progressed to lenvatinib, the systemic therapy able to achieve the longest survival is immunotherapy
    corecore