723 research outputs found
Derivatives and inequalities for order parameters in the Ising spin glass
Identities and inequalities are proved for the order parameters, correlation
functions and their derivatives of the Ising spin glass. The results serve as
additional evidence that the ferromagnetic phase is composed of two regions,
one with strong ferromagnetic ordering and the other with the effects of
disorder dominant. The Nishimori line marks a crossover between these two
regions.Comment: 10 pages; 3 figures; new inequalities added, title slightly change
Multicritical Points of Potts Spin Glasses on the Triangular Lattice
We predict the locations of several multicritical points of the Potts spin
glass model on the triangular lattice. In particular, continuous multicritical
lines, which consist of multicritical points, are obtained for two types of
two-state Potts (i.e., Ising) spin glasses with two- and three-body
interactions on the triangular lattice. These results provide us with numerous
examples to further verify the validity of the conjecture, which has succeeded
in deriving highly precise locations of multicritical points for several spin
glass models. The technique, called the direct triangular duality, a variant of
the ordinary duality transformation, directly relates the triangular lattice
with its dual triangular lattice in conjunction with the replica method.Comment: 18 pages, 2, figure
Location of the Multicritical Point for the Ising Spin Glass on the Triangular and Hexagonal Lattices
A conjecture is given for the exact location of the multicritical point in
the phase diagram of the +/- J Ising model on the triangular lattice. The
result p_c=0.8358058 agrees well with a recent numerical estimate. From this
value, it is possible to derive a comparable conjecture for the exact location
of the multicritical point for the hexagonal lattice, p_c=0.9327041, again in
excellent agreement with a numerical study. The method is a variant of duality
transformation to relate the triangular lattice directly with its dual
triangular lattice without recourse to the hexagonal lattice, in conjunction
with the replica method.Comment: 9 pages, 1 figure; Minor corrections in notatio
Exact location of the multicritical point for finite-dimensional spin glasses: A conjecture
We present a conjecture on the exact location of the multicritical point in
the phase diagram of spin glass models in finite dimensions. By generalizing
our previous work, we combine duality and gauge symmetry for replicated random
systems to derive formulas which make it possible to understand all the
relevant available numerical results in a unified way. The method applies to
non-self-dual lattices as well as to self dual cases, in the former case of
which we derive a relation for a pair of values of multicritical points for
mutually dual lattices. The examples include the +-J and Gaussian Ising spin
glasses on the square, hexagonal and triangular lattices, the Potts and Z_q
models with chiral randomness on these lattices, and the three-dimensional +-J
Ising spin glass and the random plaquette gauge model.Comment: 27 pages, 3 figure
Symmetry, complexity and multicritical point of the two-dimensional spin glass
We analyze models of spin glasses on the two-dimensional square lattice by
exploiting symmetry arguments. The replicated partition functions of the Ising
and related spin glasses are shown to have many remarkable symmetry properties
as functions of the edge Boltzmann factors. It is shown that the applications
of homogeneous and Hadamard inverses to the edge Boltzmann matrix indicate
reduced complexities when the elements of the matrix satisfy certain
conditions, suggesting that the system has special simplicities under such
conditions. Using these duality and symmetry arguments we present a conjecture
on the exact location of the multicritical point in the phase diagram.Comment: 32 pages, 6 figures; a few typos corrected. To be published in J.
Phys.
Duality and Multicritical Point of Two-Dimensional Spin Glasses
Determination of the precise location of the multicritical point and phase
boundary is a target of active current research in the theory of spin glasses.
In this short note we develop a duality argument to predict the location of the
multicritical point and the shape of the phase boundary in models of spin
glasses on the square lattice.Comment: 4 pages, 1 figure; Reference updated, definition of \tilde{V} added;
to be published in J. Phys. Soc. Jp
High-Temperature Dynamics of Spin Glasses
We develop a systematic expansion method of physical quantities for the SK
model and the finite-dimensional model of spin glasses in
non-equilibrium states. The dynamical probability distribution function is
derived from the master equation using a high temperature expansion. We
calculate the expectation values of physical quantities from the dynamical
probability distribution function. The theoretical curves show satisfactory
agreement with Monte Carlo simulation results in the appropriate temperature
and time regions. A comparison is made with the results of a dynamics theory by
Coolen, Laughton and Sherrington.Comment: 24 pages, figures available on request, LaTeX, uses jpsj.sty, to be
published in J. Phys. Soc. Jpn. 66 No. 7 (1997
Tracing the Evolution of Physics on the Backbone of Citation Networks
Many innovations are inspired by past ideas in a non-trivial way. Tracing
these origins and identifying scientific branches is crucial for research
inspirations. In this paper, we use citation relations to identify the
descendant chart, i.e. the family tree of research papers. Unlike other
spanning trees which focus on cost or distance minimization, we make use of the
nature of citations and identify the most important parent for each
publication, leading to a tree-like backbone of the citation network. Measures
are introduced to validate the backbone as the descendant chart. We show that
citation backbones can well characterize the hierarchical and fractal structure
of scientific development, and lead to accurate classification of fields and
sub-fields.Comment: 6 pages, 5 figure
Typical performance of low-density parity-check codes over general symmetric channels
Typical performance of low-density parity-check (LDPC) codes over a general
binary-input output-symmetric memoryless channel is investigated using methods
of statistical mechanics. Theoretical framework for dealing with general
symmetric channels is provided, based on which Gallager and MacKay-Neal codes
are studied as examples of LDPC codes. It has been shown that the basic
properties of these codes known for particular channels, including the property
to potentially saturate Shannon's limit, hold for general symmetric channels.
The binary-input additive-white-Gaussian-noise channel and the binary-input
Laplace channel are considered as specific channel noise models.Comment: 10 pages, 4 figures, RevTeX4; an error in reference correcte
Duality in finite-dimensional spin glasses
We present an analysis leading to a conjecture on the exact location of the
multicritical point in the phase diagram of spin glasses in finite dimensions.
The conjecture, in satisfactory agreement with a number of numerical results,
was previously derived using an ansatz emerging from duality and the replica
method. In the present paper we carefully examine the ansatz and reduce it to a
hypothesis on analyticity of a function appearing in the duality relation. Thus
the problem is now clearer than before from a mathematical point of view: The
ansatz, somewhat arbitrarily introduced previously, has now been shown to be
closely related to the analyticity of a well-defined function.Comment: 12 pages, 3 figures; A reference added; to appear in J. Stat. Phy
- …