633 research outputs found

    Forest harvesting impacts on microclimate conditions and sediment transport activities in a humid periglacial environment

    Get PDF
    Sediment transport activities in periglacial environments are controlled by microclimate conditions (i.e., air and ground temperatures, throughfall), which are highly affected by vegetation cover. Thus, there is the possibility that forest harvesting, the most dramatic change to vegetation cover in mountain areas, may severely impact sediment transport activities in periglacial areas (i.e., soil creep, dry ravel). In this study, we investigated changes in sediment transport activities following forest harvesting in steep artificial forests located in a humid periglacial area of the southern Japanese Alps. In the southern Japanese Alps, rainfall is abundant in summer and autumn, and winter air temperatures frequently rise above and fall below 0∘. Our monitoring by time lapse cameras revealed that gravitational transport processes (e.g., frost creep and dry ravel) dominate during the freeze–thaw season, while rainfall-induced processes (surface erosion and soil creep) occur during heavy rainfall seasons. Canopy removal by forest harvesting increased the winter diurnal ground surface temperature range from 2.7 to 15.9&thinsp;∘C. Forest harvesting also increased the diurnal range of net radiation and ground temperature, and decreased the duration of snow cover. Such changes in the microclimate conditions altered the type of winter soil creep from frost creep to diurnal needle-ice creep. Winter creep velocity of ground surface sediment in the harvested site (&gt;&thinsp;2&thinsp;mm&thinsp;day−1 on the days with frost heave) was significantly higher than that in the non-harvested site (generally &lt;&thinsp;1&thinsp;mm&thinsp;day−1). Meanwhile, sediment flux on the hillslopes, as observed by sediment traps, decreased in the harvested site. Branches of harvested trees left on the hillslopes captured sediment moving downslope. In addition, the growth of understories after harvesting possibly reduced surface erosion. Consequently, removal of the forest canopy by forest harvesting directly impacts the microclimate conditions (i.e., diurnal range of ground temperature and net radiation, duration of snow cover) and increases frequency and velocity of periglacial soil creep, while sediment flux on hillslopes is decreased by branches left on the hillslopes and recovery of understories. The impact of forest harvesting on sediment transport activity is seasonally variable in humid periglacial areas, because microclimate conditions relevant to both freeze–thaw processes and precipitation-induced processes control sediment transport.</p

    Gibberellin as a suppressor of lateral dominance snd inducer of apical growth in the unifoliate Streptocarpus wendlandii (Gesneriaceae)

    Get PDF
    We report on the effects of exogenously applied hormones on the lateral and apical dominance that governs morphogenesis in the unifoliate Streptocarpus wendlandii. In this phenotype, lateral dominance is extreme as the plants only retain a macrocotyledon that develops into a leaf-like phyllomorph by means of a basal meristem and do not show apical growth. Gibberellin applications suppressed the basal meristem activity of the macrocotyledon resulting in an isocotylous seedling with two microcotyledons and caused the formation of a primary phyllomorph, which suggests that the groove meristem, a shoot apical meristem equivalent, is released from apical suppression by the basal meristem. Interestingly, uniconazol, a gibberellin biosynthesis inhibitor, also caused a reduction in basal meristem activity, but without primary phyllomorph formation, suggesting that some gibberellin is required for proper function of the basal meristem. Co-application of gibberellin and cytokinin resulted in two macrocotyledons also without phyllomorph formation, which is similar to previous results for cytokinin-only applications. Thus, cytokinin may act downstream in the regulatory pathway of the basal meristem. Our results suggest that the balance between gibberellin and cytokinin in the cotyledons appears thus as key factor in the regulation of lateral and apical dominance in Streptocarpus. Their interplay may well be the primary explanation for the great diversity in growth form exhibited in species of this genus. Our work shows that small imbalances of hormones in early stages of plant development can have major effects on the final phenotype

    The bending of cell sheets - from folding to rolling

    Get PDF
    The bending of cell sheets plays a major role in multicellular embryonic morphogenesis. Recent advances are leading to a deeper understanding of how the biophysical properties and the force-producing behaviors of cells are regulated, and how these forces are integrated across cell sheets during bending. We review work that shows that the dynamic balance of apical versus basolateral cortical tension controls specific aspects of invagination of epithelial sheets, and recent evidence that tissue expansion by growth contributes to neural retinal invagination in a stem cell-derived, self-organizing system. Of special interest is the detailed analysis of the type B inversion in Volvox reported in BMC Biology by Höhn and Hallmann, as this is a system that promises to be particularly instructive in understanding morphogenesis of any monolayered spheroid system
    corecore