140 research outputs found

    Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models

    Get PDF
    A major source of error for repeat-pass Interferometric Synthetic Aperture Radar (InSAR) is the phase delay in radio signal propagation through the atmosphere (especially the part due to tropospheric water vapour). Based on experience with the Global Positioning System (GPS)/Moderate Resolution Imaging Spectroradiometer (MODIS) integrated model and the Medium Resolution Imaging Spectrometer (MERIS) correction model, two new advanced InSAR water vapour correction models are demonstrated using both MERIS and MODIS data: (1) the MERIS/MODIS combination correction model (MMCC); and (2) the MERIS/MODIS stacked correction model (MMSC). The applications of both the MMCC and MMSC models to ENVISAT Advanced Synthetic Aperture Radar (ASAR) data over the Southern California Integrated GPS Network (SCIGN) region showed a significant reduction in water vapour effects on ASAR interferograms, with the root mean square (RMS) differences between GPS- and InSAR-derived range changes in the line-of-sight (LOS) direction decreasing from ,10mm before correction to ,5mm after correction, which is similar to the GPS/MODIS integrated and MERIS correction models. It is expected that these two advanced water vapour correction models can expand the application of MERIS and MODIS data for InSAR atmospheric correction. A simple but effective approach has been developed to destripe Terra MODIS images contaminated by radiometric calibration errors. Another two limiting factors on the MMCC and MMSC models have also been investigated in this paper: (1) the impact of the time difference between MODIS and SAR data; and (2) the frequency of cloud-free conditions at the global scale

    Ligand-receptor co-evolution shaped the jasmonate pathway in land plants

    Get PDF
    The phytohormone jasmonoyl-isoleucine (JA-Ile) regulates defense, growth and developmental responses in vascular plants. Bryophytes have conserved sequences for all JA-Ile signaling pathway components but lack JA-Ile. We show that, in spite of 450 million years of independent evolution, the JA-Ile receptor COI1 is functionally conserved between the bryophyte Marchantia polymorpha and the eudicot Arabidopsis thaliana but COI1 responds to different ligands in each species. We identified the ligand of Marchantia MpCOI1 as two isomeric forms of the JA-Ile precursor dinor-OPDA (dinor-cis-OPDA and dinor-iso-OPDA). We demonstrate that AtCOI1 functionally complements Mpcoi1 mutation and confers JA-Ile responsiveness and that a single-residue substitution in MpCOI1 is responsible for the evolutionary switch in ligand specificity. Our results identify the ancestral bioactive jasmonate and clarify its biosynthetic pathway, demonstrate the functional conservation of its signaling pathway, and show that JA-Ile and COI1 emergence in vascular plants required co-evolution of hormone biosynthetic complexity and receptor specificity

    Hydrothermal Synthesis, Microstructure and Photoluminescence of Eu3+-Doped Mixed Rare Earth Nano-Orthophosphates

    Get PDF
    Eu3+-doped mixed rare earth orthophosphates (rare earth = La, Y, Gd) have been prepared by hydrothermal technology, whose crystal phase and microstructure both vary with the molar ratio of the mixed rare earth ions. For LaxY1–xPO4: Eu3+, the ion radius distinction between the La3+ and Y3+ is so large that only La0.9Y0.1PO4: Eu3+ shows the pure monoclinic phase. For LaxGd1–xPO4: Eu3+ system, with the increase in the La content, the crystal phase structure of the product changes from the hexagonal phase to the monoclinic phase and the microstructure of them changes from the nanorods to nanowires. Similarly, YxGd1–xPO4: Eu3+, Y0.1Gd0.9PO4: Eu3+ and Y0.5Gd0.5PO4: Eu3+ samples present the pure hexagonal phase and nanorods microstructure, while Y0.9Gd0.1PO4: Eu3+ exhibits the tetragonal phase and nanocubic micromorphology. The photoluminescence behaviors of Eu3+ in these hosts are strongly related to the nature of the host (composition, crystal phase and microstructure)

    Inter- and intrachromosomal asynchrony of cell division cycle events in root meristem cells of Allium cepa: possible connection with gradient of cyclin B-like proteins

    Get PDF
    Alternate treatments of Allium cepa root meristems with hydroxyurea (HU) and caffeine give rise to extremely large and highly elongated cells with atypical images of mitotic divisions, including internuclear asynchrony and an unknown type of interchromosomal asynchrony observed during metaphase-to-anaphase transition. Another type of asynchrony that cannot depend solely on the increased length of cells was observed following long-term incubation of roots with HU. This kind of treatment revealed both cell nuclei entering premature mitosis and, for the first time, an uncommon form of mitotic abnormality manifested in a gradual condensation of chromatin (spanning from interphase to prometaphase). Immunocytochemical study of polykaryotic cells using anti-β tubulin antibodies revealed severe perturbations in the microtubular organization of preprophase bands. Quantitative immunofluorescence measurements of the control cells indicate that the level of cyclin B-like proteins reaches the maximum at the G2 to metaphase transition and then becomes reduced during later stages of mitosis. After long-term incubation with low doses of HU, the amount of cyclin B-like proteins considerably increases, and a significant number of elongated cells show gradients of these proteins spread along successive regions of the perinuclear cytoplasm. It is suggested that there may be a direct link between the effects of HU-mediated deceleration of S- and G2-phases and an enhanced concentration of cyclin B-like proteins. In consequence, the activation of cyclin B-CDK complexes gives rise to an abnormal pattern of premature mitotic chromosome condensation with biphasic nuclear structures having one part of chromatin decondensed, and the other part condensed

    Structure, function, and evolution of plant NIMA-related kinases: implication for phosphorylation-dependent microtubule regulation

    Full text link
    corecore