77 research outputs found

    Interfacial Structure at the Quaternary Ammonium-Based Ionic Liquids vertical bar Gold Electrode Interface Probed by Surface-Enhanced Infrared Absorption Spectroscopy: Anion Dependence of the Cationic Behavior

    Get PDF
    The interfacial structure at the quaternary ammonium-based ionic liquids(ILs)|gold(Au) electrode interface has been studied using surface-enhanced infrared absorption spectroscopy (SEIRAS). Four anions, bis(perfluoroalkanesulfonyl)amide (CₙCₙN⁻; n = 0, 1, 2, 4), have been combined with a quaternary ammonium cation, trioctylmethylammonium (N₈₈₈₁⁺), to investigate the influence of the perfluoroalkyl chain length of the anion on the behavior of the quaternary ammonium cation at the interface. In addition, to investigate the effect of the alkyl chain length of the quaternary ammonium cations on the cationic behavior, we have also combined a cation with a shorter alkyl chain, tributylmethylammonium (N₄₄₄₁⁺) with C₁C₁N⁻. Thus, we have performed SEIRAS measurements at the Au interface of five ILs: [N₈₈₈₁⁺][CₙCₙN⁻] (n = 0, 1, 2, 4) and [N₄₄₄₁⁺][C₁C₁N⁻]. The four CH stretching bands originating from the quaternary ammonium cations have been individually analyzed, enabling us to reveal the behavior of the quaternary ammonium cations at the interface. The cationic behavior is found to dramatically depend not only on the alkyl chain length but also on the perfluoroalkyl chain length of the counterion. For [N₈₈₈₁⁺][C₄C₄N⁻] and [N₈₈₈₁⁺][C₂C₂N⁻], octyl chains of N₈₈₈₁⁺cannot reach the Au electrode surface at positive potentials because the bulky anions in the first ionic layer on the electrode surface block the approach. Conversely, for ILs with the smaller anions ([N₈₈₈₁⁺][C₁C₁N⁻] and [N₈₈₈₁⁺][C₀C₀N⁻]), octyl chains of N₈₈₈₁⁺ can penetrate into a space in the first ionic layer of small anions. The butyl chains of N₄₄₄₁⁺ in [N₄₄₄₁⁺][C₁C₁N⁻] cannot reach the surface at positive potentials even across the first ionic layer of the small anions because of their relatively short alkyl chain length

    Exploration of Genes Associated with Sponge Silicon Biomineralization in the Whole Genome Sequence of the Hexactinellid Euplectella curvistellata.

    Get PDF
    Silicatein is the first protein isolated from the silicon biominerals and characterized as constituent of the axial filament in the silica spicules of the demosponge Tethya aurantia, by significant sequence similarity with cathepsin L, an animal lysosomal protease, and as a catalyst of silica polycondensation at neutral pH and room temperature. This protein was then identified in a wide range of the class Demospongiae and in some species of the class Hexactinellida. Our attempt to isolate silicatein from the silica skeleton of Euplectella was unsuccessful, but instead we discovered glassin, a protein directing acceleration of silica polycondensation and sharing no significant relationship with any proteins including silicatein. The present study aims to verify the existence of silicatein by exploring the whole genome DNA sequence database of E. curvistellata with the sequence similarity search. Although we identified the sequences of glassin, cathepsin L and chitin synthetase, an enzyme synthesizing chitin, which has already been found in the silicon biominerals in E. aspergillum, silicatein failed to be identified. Our result indicates that silicatein is not essential for poriferan silicon biomineralization in the presence of glassin

    Ultra-High-Speed Image Signal Accumulation Sensor

    Get PDF
    Averaging of accumulated data is a standard technique applied to processing data with low signal-to-noise ratios (SNR), such as image signals captured in ultra-high-speed imaging. The authors propose an architecture layout of an ultra-high-speed image sensor capable of on-chip signal accumulation. The very high frame rate is enabled by employing an image sensor structure with a multi-folded CCD in each pixel, which serves as an in situ image signal storage. The signal accumulation function is achieved by direct connection of the first and the last storage elements of the in situ storage CCD. It has been thought that the multi-folding is achievable only by driving electrodes with complicated and impractical layouts. Simple configurations of the driving electrodes to overcome the difficulty are presented for two-phase and four-phase transfer CCD systems. The in situ storage image sensor with the signal accumulation function is named Image Signal Accumulation Sensor (ISAS)

    MTHFR, Homocysteine, and Schizophrenia

    Get PDF
    Previous studies suggest that elevated blood homocysteine levels and the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism are risk factors for schizophrenia. However, the effects of gender and MTHFR C677T genotypes on blood homocysteine levels in schizophrenia have not been consistent. We first investigated whether plasma total homocysteine levels were higher in patients with schizophrenia than in controls with stratification by gender and by the MTHFR C677T genotypes in a large cohort (N = 1379). Second, we conducted a meta-analysis of association studies between blood homocysteine levels and schizophrenia separately by gender (N = 4714). Third, we performed a case-control association study between the MTHFR C677T polymorphism and schizophrenia (N = 4998) and conducted a meta-analysis of genetic association studies based on Japanese subjects (N = 10 378). Finally, we assessed the effect of plasma total homocysteine levels on schizophrenia by a mendelian randomization approach. The ANCOVA after adjustment for age demonstrated a significant effect of diagnosis on the plasma total homocysteine levels in all strata, and the subsequent meta-analysis for gender demonstrated elevated blood homocysteine levels in both male and female patients with schizophrenia although antipsychotic medication might influence the outcome. The meta-analysis of the Japanese genetic association studies demonstrated a significant association between the MTHFR C677T polymorphism and schizophrenia. The mendelian randomization analysis in the Japanese populations yielded an OR of 1.15 for schizophrenia per 1-SD increase in plasma total homocysteine. Our study suggests that increased plasma total homocysteine levels may be associated with an increased risk of schizophrenia

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore