14 research outputs found

    Discrimination of Oral Mucosal Disease Inspired by Diagnostic Process of Specialist

    Get PDF
    A discrimination of oral mucosal diseases is very important in clinical site. Therefore, a development of a screening support system for oral mucosal diseases which supports the diagnosis of clinical dentist is required. In this paper, a discrimination method based on fuzzy inference using four attributes (existence of vitiligos, bulges, granular patterns, and reddening) for oral mucosal diseases is proposed. As the results of the experiment, the discrimination rates of squamous cell carcinoma, leukoplakia and lichen planus were 87%, 70% and 87%, respectively. The results suggest that the proposed method is effective in discriminating oral mucosal diseases

    Discrimination of Oral Mucosal Disease Inspired by Diagnostic Process of Specialist

    Get PDF
    Abstract-A discrimination of oral mucosal diseases is very important in clinical site. Therefore, a development of a screening support system for oral mucosal diseases which supports the diagnosis of clinical dentist is required. In this paper, a discrimination method based on fuzzy inference using four attributes (existence of vitiligos, bulges, granular patterns, and reddening) for oral mucosal diseases is proposed. As the results of the experiment, the discrimination rates of squamous cell carcinoma, leukoplakia and lichen planus were 87%, 70% and 87%, respectively. The results suggest that the proposed method is effective in discriminating oral mucosal diseases. Index Terms-oral mucosal disease, diagnosis support system, fuzzy inference, intraoral imag

    Results of the search for inspiraling compact star binaries from TAMA300's observation in 2000-2004

    Get PDF
    We analyze the data of TAMA300 detector to search for gravitational waves from inspiraling compact star binaries with masses of the component stars in the range 1-3Msolar. In this analysis, 2705 hours of data, taken during the years 2000-2004, are used for the event search. We combine the results of different observation runs, and obtained a single upper limit on the rate of the coalescence of compact binaries in our Galaxy of 20 per year at a 90% confidence level. In this upper limit, the effect of various systematic errors such like the uncertainty of the background estimation and the calibration of the detector's sensitivity are included.Comment: 8 pages, 4 Postscript figures, uses revtex4.sty The author list was correcte

    Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses

    Get PDF
    We present data-analysis schemes and results of observations with the TAMA300 gravitational-wave detector, targeting burst signals from stellar-core collapse events. In analyses for burst gravitational waves, the detection and fake-reduction schemes are different from well-investigated ones for a chirp-wave analysis, because precise waveform templates are not available. We used an excess-power filter for the extraction of gravitational-wave candidates, and developed two methods for the reduction of fake events caused by non-stationary noises of the detector. These analysis schemes were applied to real data from the TAMA300 interferometric gravitational wave detector. As a result, fake events were reduced by a factor of about 1000 in the best cases. The resultant event candidates were interpreted from an astronomical viewpoint. We set an upper limit of 2.2x10^3 events/sec on the burst gravitational-wave event rate in our Galaxy with a confidence level of 90%. This work sets a milestone and prospects on the search for burst gravitational waves, by establishing an analysis scheme for the observation data from an interferometric gravitational wave detector

    Table1_Development of a contacting transwell co-culture system for the in vitro propagation of primary central nervous system lymphoma.pdf

    No full text
    Primary central nervous system lymphoma (PCNSL) is a malignant neoplasm of the central nervous system that is refractory to treatment and has extremely poor prognosis. One factor hindering the development of therapeutic options for PCNSL is its molecular heterogeneity and the extreme difficulty in establishing in vitro cell lines that permit intensive research on this disease. In the present study, we developed a method to propagate PCNSL cells in vitro using a contacting transwell cell culture system involving brain vascular pericytes. The co-culture system was found to recapitulate the tumor microenvironment that is influenced by the biological activity of adjacent pericytes, and to sustain the survival and proliferation of PCNSL cells in vitro. We further delineated the underlying molecular mechanisms and found that the HGF–c-Met axis may be involved in the long-term in vitro culture of PCNSL cells. Moreover, the peptidylprolyl isomerase Pin1 was found to play a key role in PCNSL cell survival and it sustained proliferation through interactions with key transcription factors related to B-cell lymphomagenesis. These results suggest that our in vitro co-culture system is well suited to analyzing the biological and molecular characteristics of PCNSL, and may contribute to the discovery of new therapeutic interventions.</p

    Image4_Development of a contacting transwell co-culture system for the in vitro propagation of primary central nervous system lymphoma.jpeg

    No full text
    Primary central nervous system lymphoma (PCNSL) is a malignant neoplasm of the central nervous system that is refractory to treatment and has extremely poor prognosis. One factor hindering the development of therapeutic options for PCNSL is its molecular heterogeneity and the extreme difficulty in establishing in vitro cell lines that permit intensive research on this disease. In the present study, we developed a method to propagate PCNSL cells in vitro using a contacting transwell cell culture system involving brain vascular pericytes. The co-culture system was found to recapitulate the tumor microenvironment that is influenced by the biological activity of adjacent pericytes, and to sustain the survival and proliferation of PCNSL cells in vitro. We further delineated the underlying molecular mechanisms and found that the HGF–c-Met axis may be involved in the long-term in vitro culture of PCNSL cells. Moreover, the peptidylprolyl isomerase Pin1 was found to play a key role in PCNSL cell survival and it sustained proliferation through interactions with key transcription factors related to B-cell lymphomagenesis. These results suggest that our in vitro co-culture system is well suited to analyzing the biological and molecular characteristics of PCNSL, and may contribute to the discovery of new therapeutic interventions.</p

    Image2_Development of a contacting transwell co-culture system for the in vitro propagation of primary central nervous system lymphoma.jpeg

    No full text
    Primary central nervous system lymphoma (PCNSL) is a malignant neoplasm of the central nervous system that is refractory to treatment and has extremely poor prognosis. One factor hindering the development of therapeutic options for PCNSL is its molecular heterogeneity and the extreme difficulty in establishing in vitro cell lines that permit intensive research on this disease. In the present study, we developed a method to propagate PCNSL cells in vitro using a contacting transwell cell culture system involving brain vascular pericytes. The co-culture system was found to recapitulate the tumor microenvironment that is influenced by the biological activity of adjacent pericytes, and to sustain the survival and proliferation of PCNSL cells in vitro. We further delineated the underlying molecular mechanisms and found that the HGF–c-Met axis may be involved in the long-term in vitro culture of PCNSL cells. Moreover, the peptidylprolyl isomerase Pin1 was found to play a key role in PCNSL cell survival and it sustained proliferation through interactions with key transcription factors related to B-cell lymphomagenesis. These results suggest that our in vitro co-culture system is well suited to analyzing the biological and molecular characteristics of PCNSL, and may contribute to the discovery of new therapeutic interventions.</p

    Image3_Development of a contacting transwell co-culture system for the in vitro propagation of primary central nervous system lymphoma.jpeg

    No full text
    Primary central nervous system lymphoma (PCNSL) is a malignant neoplasm of the central nervous system that is refractory to treatment and has extremely poor prognosis. One factor hindering the development of therapeutic options for PCNSL is its molecular heterogeneity and the extreme difficulty in establishing in vitro cell lines that permit intensive research on this disease. In the present study, we developed a method to propagate PCNSL cells in vitro using a contacting transwell cell culture system involving brain vascular pericytes. The co-culture system was found to recapitulate the tumor microenvironment that is influenced by the biological activity of adjacent pericytes, and to sustain the survival and proliferation of PCNSL cells in vitro. We further delineated the underlying molecular mechanisms and found that the HGF–c-Met axis may be involved in the long-term in vitro culture of PCNSL cells. Moreover, the peptidylprolyl isomerase Pin1 was found to play a key role in PCNSL cell survival and it sustained proliferation through interactions with key transcription factors related to B-cell lymphomagenesis. These results suggest that our in vitro co-culture system is well suited to analyzing the biological and molecular characteristics of PCNSL, and may contribute to the discovery of new therapeutic interventions.</p

    Image1_Development of a contacting transwell co-culture system for the in vitro propagation of primary central nervous system lymphoma.jpeg

    No full text
    Primary central nervous system lymphoma (PCNSL) is a malignant neoplasm of the central nervous system that is refractory to treatment and has extremely poor prognosis. One factor hindering the development of therapeutic options for PCNSL is its molecular heterogeneity and the extreme difficulty in establishing in vitro cell lines that permit intensive research on this disease. In the present study, we developed a method to propagate PCNSL cells in vitro using a contacting transwell cell culture system involving brain vascular pericytes. The co-culture system was found to recapitulate the tumor microenvironment that is influenced by the biological activity of adjacent pericytes, and to sustain the survival and proliferation of PCNSL cells in vitro. We further delineated the underlying molecular mechanisms and found that the HGF–c-Met axis may be involved in the long-term in vitro culture of PCNSL cells. Moreover, the peptidylprolyl isomerase Pin1 was found to play a key role in PCNSL cell survival and it sustained proliferation through interactions with key transcription factors related to B-cell lymphomagenesis. These results suggest that our in vitro co-culture system is well suited to analyzing the biological and molecular characteristics of PCNSL, and may contribute to the discovery of new therapeutic interventions.</p
    corecore