22 research outputs found
Synthèse et caractérisation des oligomères et polymères Ä-conjugués nanostructurés pour applications en photovoltaïque
Organic photovoltaic (OPV) cells have been a subject of increasing interest during the last decade as they are promising candidates for low cost renewable energy production. In order to obtain reasonably high performance organic solar cells, development of efficient light absorbing materials are of primary focus in the OPV field. In this context, the present work is focused on the design and development of new electron donor materials (oligomers and polymers) as light absorbing materials based on “Donor-Acceptor” approach alternating electron donating group and electron withdrawing group. Three main families of electron donating group are studied: oligothiophenes, fluorene and indacenodithiophene. Fluorenone unit is the principal electron withdrawing group studied and a direct comparison with the system based on benzothiadiazole unit as electron withdrawing unit is also provided. Three main synthetic methods were employed: oxidative polymerization mediated by Iron (III) chloride and Palladium cross-coupling reactions according to Suzuki coupling or Stille coupling conditions. Spectroscopic studies on absorption and photoluminescence have demonstrated the presence of characteristic charge transfer complex in all the studied D-A oligomers and polymers allowing the extension of the absorption spectrum. The D-A oligomers and polymers have shown an overall low optical band gap of 1.6-2 eV with absorption spectra up to 600 to 800 nm. The nature of the charge transfer complex transitions bands were found to be depending on the strength of the electron donating unit and the electron withdrawing unit. Furthermore molecular packing in solution and in solid state has also demonstrated to contribute to extension of absorption spectrum. The HOMO and LUMO energy levels of the oligomers and polymers were determined by electrochemical measurements. Fluorene-based polymers have shown low lying HOMO energy levels, and these polymers demonstrate high open circuit voltage (Voc) in photovoltaic cell when combined with fullerenes derivatives PCBM with Voc values close to 0.9 V. The oligomers and polymers tested in photovoltaic devices have shown promising results with the highest power conversion efficiency obtained of 2.1 % when combined with fullerenes PCBMC70. These results were obtained after only limited numbers of device optimizations such as the active materials ratios and thermal annealing. Therefore further optimization of devices may exhibit higher power conversion efficiencies.Les cellules photovoltaïques organiques ont fait l'objet d'un intérêt croissant au cours de ces dernières décennies car elles offrent un grand potentiel pour une production d'énergie renouvelable à faible coût. Afin d'obtenir des cellules solaires organiques à haut rendement de conversion d'énergie, beaucoup de recherches se focalisent sur les matériaux ayant des capacités à absorber la lumière efficacement. Dans ce contexte, le présent travail se concentre sur la conception et le développement de nouveaux matériaux donneurs d'électrons (oligomères et polymères) comme matériaux absorbant de la lumière basée sur l'approche « Donneur-Accepteur » alternant des segments riches en électron (donneur d'électron) et des unités pauvres en électron (accepteur d'électron). Trois séries d'unités riches en électron ont été étudiées: oligothiophènes, fluorène et indacenodithiophene. L'unité fluorénone est la principale unité « accepteur d'électron » étudiée. Une comparaison directe avec le système basé sur l'unité benzothiadiazole comme accepteur d'électron est également rapportée. Trois méthodes principales de synthèse ont été utilisées: polymérisation oxydante par le chlorure de fer (III), et les couplages croisés au palladium de type Suzuki ou de Stille. Les études spectroscopique UV-Visible en absorption et en photoluminescence sur ces oligomères et polymères ont démontré la présence de complexes à transfert de charges permettant d'élargir le spectre d'absorption. Les oligomères et les polymères possèdent des faibles largeurs de bande interdite de 1,6 eV à 2 eV. Les systèmes ayant des unités fluorénones présentent des spectres d'absorption étendus allant jusqu'à 600-700 nm, tandis que les systèmes ayant des unités benzothiadiazoles présentent des spectres d'absorption allant jusqu'à 700- 800 nm. La nature des bandes de complexes à transfert de charge se révèle d'être dépendant de la force de respective des unités « donneur d'électrons » et des unités « accepteur d'électrons ». Les niveaux d'énergies HOMO et LUMO des oligomères et les polymères sont déterminés par des mesures électrochimiques. Les polymères à base de fluorène possèdent des niveaux d'énergie HOMO les plus bas. Ces polymères testés en mélange avec les fullerenes PCBM en cellules photovoltaïques ont démontré des valeurs élevées de tension en circuit ouvert (Voc) proche de 0,9 V. Tous les oligomères et les polymères ont été testés dans des dispositifs photovoltaïques et ont montré des résultats encourageants avec des rendements de conversion allant jusqu'à 2,1 %. Ce sont des premièrs résultats obtenus après seulement quelques optimisations (ratios oligomères ou polymères : fullerènes et recuit thermique). Ce travail prometteur permet ainsi d'envisager des résultats plus élevés dans le futur
Synthèse et caractérisation des oligomères et polymères Ä-conjugués nanostructurés pour applications en photovoltaïque
Organic photovoltaic (OPV) cells have been a subject of increasing interest during the last decade as they are promising candidates for low cost renewable energy production. In order to obtain reasonably high performance organic solar cells, development of efficient light absorbing materials are of primary focus in the OPV field. In this context, the present work is focused on the design and development of new electron donor materials (oligomers and polymers) as light absorbing materials based on “Donor-Acceptor” approach alternating electron donating group and electron withdrawing group. Three main families of electron donating group are studied: oligothiophenes, fluorene and indacenodithiophene. Fluorenone unit is the principal electron withdrawing group studied and a direct comparison with the system based on benzothiadiazole unit as electron withdrawing unit is also provided. Three main synthetic methods were employed: oxidative polymerization mediated by Iron (III) chloride and Palladium cross-coupling reactions according to Suzuki coupling or Stille coupling conditions. Spectroscopic studies on absorption and photoluminescence have demonstrated the presence of characteristic charge transfer complex in all the studied D-A oligomers and polymers allowing the extension of the absorption spectrum. The D-A oligomers and polymers have shown an overall low optical band gap of 1.6-2 eV with absorption spectra up to 600 to 800 nm. The nature of the charge transfer complex transitions bands were found to be depending on the strength of the electron donating unit and the electron withdrawing unit. Furthermore molecular packing in solution and in solid state has also demonstrated to contribute to extension of absorption spectrum. The HOMO and LUMO energy levels of the oligomers and polymers were determined by electrochemical measurements. Fluorene-based polymers have shown low lying HOMO energy levels, and these polymers demonstrate high open circuit voltage (Voc) in photovoltaic cell when combined with fullerenes derivatives PCBM with Voc values close to 0.9 V. The oligomers and polymers tested in photovoltaic devices have shown promising results with the highest power conversion efficiency obtained of 2.1 % when combined with fullerenes PCBMC70. These results were obtained after only limited numbers of device optimizations such as the active materials ratios and thermal annealing. Therefore further optimization of devices may exhibit higher power conversion efficiencies.Les cellules photovoltaïques organiques ont fait l'objet d'un intérêt croissant au cours de ces dernières décennies car elles offrent un grand potentiel pour une production d'énergie renouvelable à faible coût. Afin d'obtenir des cellules solaires organiques à haut rendement de conversion d'énergie, beaucoup de recherches se focalisent sur les matériaux ayant des capacités à absorber la lumière efficacement. Dans ce contexte, le présent travail se concentre sur la conception et le développement de nouveaux matériaux donneurs d'électrons (oligomères et polymères) comme matériaux absorbant de la lumière basée sur l'approche « Donneur-Accepteur » alternant des segments riches en électron (donneur d'électron) et des unités pauvres en électron (accepteur d'électron). Trois séries d'unités riches en électron ont été étudiées: oligothiophènes, fluorène et indacenodithiophene. L'unité fluorénone est la principale unité « accepteur d'électron » étudiée. Une comparaison directe avec le système basé sur l'unité benzothiadiazole comme accepteur d'électron est également rapportée. Trois méthodes principales de synthèse ont été utilisées: polymérisation oxydante par le chlorure de fer (III), et les couplages croisés au palladium de type Suzuki ou de Stille. Les études spectroscopique UV-Visible en absorption et en photoluminescence sur ces oligomères et polymères ont démontré la présence de complexes à transfert de charges permettant d'élargir le spectre d'absorption. Les oligomères et les polymères possèdent des faibles largeurs de bande interdite de 1,6 eV à 2 eV. Les systèmes ayant des unités fluorénones présentent des spectres d'absorption étendus allant jusqu'à 600-700 nm, tandis que les systèmes ayant des unités benzothiadiazoles présentent des spectres d'absorption allant jusqu'à 700- 800 nm. La nature des bandes de complexes à transfert de charge se révèle d'être dépendant de la force de respective des unités « donneur d'électrons » et des unités « accepteur d'électrons ». Les niveaux d'énergies HOMO et LUMO des oligomères et les polymères sont déterminés par des mesures électrochimiques. Les polymères à base de fluorène possèdent des niveaux d'énergie HOMO les plus bas. Ces polymères testés en mélange avec les fullerenes PCBM en cellules photovoltaïques ont démontré des valeurs élevées de tension en circuit ouvert (Voc) proche de 0,9 V. Tous les oligomères et les polymères ont été testés dans des dispositifs photovoltaïques et ont montré des résultats encourageants avec des rendements de conversion allant jusqu'à 2,1 %. Ce sont des premièrs résultats obtenus après seulement quelques optimisations (ratios oligomères ou polymères : fullerènes et recuit thermique). Ce travail prometteur permet ainsi d'envisager des résultats plus élevés dans le futur
Synthesis and characterisation of Pi-conjugated oligomers and polymers for applications in photovoltaic cells
Les cellules photovoltaïques organiques ont fait l'objet d'un intérêt croissant au cours de ces dernières décennies car elles offrent un grand potentiel pour une production d'énergie renouvelable à faible coût. Afin d'obtenir des cellules solaires organiques à haut rendement de conversion d'énergie, beaucoup de recherches se focalisent sur les matériaux ayant des capacités à absorber la lumière efficacement. Dans ce contexte, le présent travail se concentre sur la conception et le développement de nouveaux matériaux donneurs d'électrons (oligomères et polymères) comme matériaux absorbant de la lumière basée sur l'approche « Donneur-Accepteur » alternant des segments riches en électron (donneur d'électron) et des unités pauvres en électron (accepteur d'électron). Trois séries d'unités riches en électron ont été étudiées: oligothiophènes, fluorène et indacenodithiophene. L'unité fluorénone est la principale unité « accepteur d'électron » étudiée. Une comparaison directe avec le système basé sur l'unité benzothiadiazole comme accepteur d'électron est également rapportée. Trois méthodes principales de synthèse ont été utilisées: polymérisation oxydante par le chlorure de fer (III), et les couplages croisés au palladium de type Suzuki ou de Stille. Les études spectroscopique UV-Visible en absorption et en photoluminescence sur ces oligomères et polymères ont démontré la présence de complexes à transfert de charges permettant d'élargir le spectre d'absorption. Les oligomères et les polymères possèdent des faibles largeurs de bande interdite de 1,6 eV à 2 eV. Les systèmes ayant des unités fluorénones présentent des spectres d'absorption étendus allant jusqu'à 600-700 nm, tandis que les systèmes ayant des unités benzothiadiazoles présentent des spectres d'absorption allant jusqu'à 700- 800 nm. La nature des bandes de complexes à transfert de charge se révèle d'être dépendant de la force de respective des unités « donneur d'électrons » et des unités « accepteur d'électrons ». Les niveaux d'énergies HOMO et LUMO des oligomères et les polymères sont déterminés par des mesures électrochimiques. Les polymères à base de fluorène possèdent des niveaux d'énergie HOMO les plus bas. Ces polymères testés en mélange avec les fullerenes PCBM en cellules photovoltaïques ont démontré des valeurs élevées de tension en circuit ouvert (Voc) proche de 0,9 V. Tous les oligomères et les polymères ont été testés dans des dispositifs photovoltaïques et ont montré des résultats encourageants avec des rendements de conversion allant jusqu'à 2,1 %. Ce sont des premièrs résultats obtenus après seulement quelques optimisations (ratios oligomères ou polymères : fullerènes et recuit thermique). Ce travail prometteur permet ainsi d'envisager des résultats plus élevés dans le futur.Organic photovoltaic (OPV) cells have been a subject of increasing interest during the last decade as they are promising candidates for low cost renewable energy production. In order to obtain reasonably high performance organic solar cells, development of efficient light absorbing materials are of primary focus in the OPV field. In this context, the present work is focused on the design and development of new electron donor materials (oligomers and polymers) as light absorbing materials based on “Donor-Acceptor” approach alternating electron donating group and electron withdrawing group. Three main families of electron donating group are studied: oligothiophenes, fluorene and indacenodithiophene. Fluorenone unit is the principal electron withdrawing group studied and a direct comparison with the system based on benzothiadiazole unit as electron withdrawing unit is also provided. Three main synthetic methods were employed: oxidative polymerization mediated by Iron (III) chloride and Palladium cross-coupling reactions according to Suzuki coupling or Stille coupling conditions. Spectroscopic studies on absorption and photoluminescence have demonstrated the presence of characteristic charge transfer complex in all the studied D-A oligomers and polymers allowing the extension of the absorption spectrum. The D-A oligomers and polymers have shown an overall low optical band gap of 1.6-2 eV with absorption spectra up to 600 to 800 nm. The nature of the charge transfer complex transitions bands were found to be depending on the strength of the electron donating unit and the electron withdrawing unit. Furthermore molecular packing in solution and in solid state has also demonstrated to contribute to extension of absorption spectrum. The HOMO and LUMO energy levels of the oligomers and polymers were determined by electrochemical measurements. Fluorene-based polymers have shown low lying HOMO energy levels, and these polymers demonstrate high open circuit voltage (Voc) in photovoltaic cell when combined with fullerenes derivatives PCBM with Voc values close to 0.9 V. The oligomers and polymers tested in photovoltaic devices have shown promising results with the highest power conversion efficiency obtained of 2.1 % when combined with fullerenes PCBMC70. These results were obtained after only limited numbers of device optimizations such as the active materials ratios and thermal annealing. Therefore further optimization of devices may exhibit higher power conversion efficiencies
Synthèse et caractérisation des oligomères et polymères Ä-conjugués nanostructurés pour applications en photovoltaïque
Les cellules photovoltaïques organiques ont fait l'objet d'un intérêt croissant au cours de ces dernières décennies car elles offrent un grand potentiel pour une production d'énergie renouvelable à faible coût. Afin d'obtenir des cellules solaires organiques à haut rendement de conversion d'énergie, beaucoup de recherches se focalisent sur les matériaux ayant des capacités à absorber la lumière efficacement. Dans ce contexte, le présent travail se concentre sur la conception et le développement de nouveaux matériaux donneurs d'électrons (oligomères et polymères) comme matériaux absorbant de la lumière basée sur l'approche Donneur-Accepteur alternant des segments riches en électron (donneur d'électron) et des unités pauvres en électron (accepteur d'électron). Trois séries d'unités riches en électron ont été étudiées: oligothiophènes, fluorène et indacenodithiophene. L'unité fluorénone est la principale unité accepteur d'électron étudiée. Une comparaison directe avec le système basé sur l'unité benzothiadiazole comme accepteur d'électron est également rapportée. Trois méthodes principales de synthèse ont été utilisées: polymérisation oxydante par le chlorure de fer (III), et les couplages croisés au palladium de type Suzuki ou de Stille. Les études spectroscopique UV-Visible en absorption et en photoluminescence sur ces oligomères et polymères ont démontré la présence de complexes à transfert de charges permettant d'élargir le spectre d'absorption. Les oligomères et les polymères possèdent des faibles largeurs de bande interdite de 1,6 eV à 2 eV. Les systèmes ayant des unités fluorénones présentent des spectres d'absorption étendus allant jusqu'à 600-700 nm, tandis que les systèmes ayant des unités benzothiadiazoles présentent des spectres d'absorption allant jusqu'à 700- 800 nm. La nature des bandes de complexes à transfert de charge se révèle d'être dépendant de la force de respective des unités donneur d'électrons et des unités accepteur d'électrons . Les niveaux d'énergies HOMO et LUMO des oligomères et les polymères sont déterminés par des mesures électrochimiques. Les polymères à base de fluorène possèdent des niveaux d'énergie HOMO les plus bas. Ces polymères testés en mélange avec les fullerenes PCBM en cellules photovoltaïques ont démontré des valeurs élevées de tension en circuit ouvert (Voc) proche de 0,9 V. Tous les oligomères et les polymères ont été testés dans des dispositifs photovoltaïques et ont montré des résultats encourageants avec des rendements de conversion allant jusqu'à 2,1 %. Ce sont des premièrs résultats obtenus après seulement quelques optimisations (ratios oligomères ou polymères : fullerènes et recuit thermique). Ce travail prometteur permet ainsi d'envisager des résultats plus élevés dans le futur.Organic photovoltaic (OPV) cells have been a subject of increasing interest during the last decade as they are promising candidates for low cost renewable energy production. In order to obtain reasonably high performance organic solar cells, development of efficient light absorbing materials are of primary focus in the OPV field. In this context, the present work is focused on the design and development of new electron donor materials (oligomers and polymers) as light absorbing materials based on Donor-Acceptor approach alternating electron donating group and electron withdrawing group. Three main families of electron donating group are studied: oligothiophenes, fluorene and indacenodithiophene. Fluorenone unit is the principal electron withdrawing group studied and a direct comparison with the system based on benzothiadiazole unit as electron withdrawing unit is also provided. Three main synthetic methods were employed: oxidative polymerization mediated by Iron (III) chloride and Palladium cross-coupling reactions according to Suzuki coupling or Stille coupling conditions. Spectroscopic studies on absorption and photoluminescence have demonstrated the presence of characteristic charge transfer complex in all the studied D-A oligomers and polymers allowing the extension of the absorption spectrum. The D-A oligomers and polymers have shown an overall low optical band gap of 1.6-2 eV with absorption spectra up to 600 to 800 nm. The nature of the charge transfer complex transitions bands were found to be depending on the strength of the electron donating unit and the electron withdrawing unit. Furthermore molecular packing in solution and in solid state has also demonstrated to contribute to extension of absorption spectrum. The HOMO and LUMO energy levels of the oligomers and polymers were determined by electrochemical measurements. Fluorene-based polymers have shown low lying HOMO energy levels, and these polymers demonstrate high open circuit voltage (Voc) in photovoltaic cell when combined with fullerenes derivatives PCBM with Voc values close to 0.9 V. The oligomers and polymers tested in photovoltaic devices have shown promising results with the highest power conversion efficiency obtained of 2.1 % when combined with fullerenes PCBMC70. These results were obtained after only limited numbers of device optimizations such as the active materials ratios and thermal annealing. Therefore further optimization of devices may exhibit higher power conversion efficiencies.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
Conversion of palm oil to new sulfur-based polymer by inverse vulcanization
The conversion of palm oil into a sulfur-based polymer by copolymerization with sulfur powder at its molten state is herein reported. The obtained sulfur-containing polymer was characterized using Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to demonstrate the successful conversion. The disappearance of the peaks related to vinylic groups of oil together with the appearance of a peak representing C-H rocking vibrations in the vicinity of C-S bonds confirmed the copolymerization of sulfur with oil. TGA revealed that the polymers have thermal stability up to 230°C under nitrogen and the polymers leave 10% sulfur-rich ash. DSC proved that a small amount of elemental sulfur remained unreacted in the polymer, which showed amorphous and heavily crosslinked structure resembling thermosets. These copolymers are an environmental-friendly polymeric material promoting the utilization of the abundant sulfur while also adding value to palm oil
Computational studies of ionic liquids as co-catalyst for CO
Transforming carbon dioxide (CO2) into value-added products through electrochemical reduction reaction (CO2ERR) is a promising technique due to its potential advantages using renewable energy. The main challenge is to find a stable catalytic system that could minimize the reaction overpotential with high faradaic efficiency and high current density. Ionic liquids (ILs) as electrolyte in CO2ERR have attracted attention due to the advantages of their unique properties in enhancing catalytic efficiency. For better performance, a systematic understanding of the role of ILs as electrocatalyst is needed. Therefore, this paper aims to correlate the performance of ILs as co-catalyst in (CO2ERR) with the lowest unoccupied molecular orbital (LUMO) energy level and the interaction energy as predicted by quantum chemical calculation using Conductor like Screening Model for Real Solvents (COSMO-RS) and Turbomole. The results show strong linearity (R2=0.98) between hydrogen bond energy (HB) and LUMO values. It is demonstrated that as HB increases, the LUMO value decreases, and the catalytic activity for CO2ERR also increases. This result allows further understanding on the correlation between the molecular structure and the catalytic activity for CO2ERR. It can serve as a priori prediction to aid in the design of new effective catalysts
Viscosity and Ionic Conductivity of Imidazolium based Ionic Liquids bearing Triiodide Anion
In the electrolyte application for dye sensitized solar cells, utilization of ionic liquids is getting the highlights to replace volatile organic solvent thanks to their low volatility, thermal and electrochemical stability. The iodide/triiodide redox electrolyte is the preferred choice for this application, hence numerous iodide-based ionic liquids have been explored and reported. On the contrary, the transport properties of triiodide based ionic liquid is often lack of reporting despite of having an equal influence on the overall viscosity and ionic conductivity of the electrolyte. In this study, three alkylimidazolium triiodide ionic liquids were synthesized from the respective alkylimidazolium iodide ionic liquids precursors and their physicochemical and conductivity properties are reported. 1H NMR analysis showed a slight shifting of position of the resonances of triiodide based alkylimidazolium ionic liquids as compared to their precursors due to less electronegativity nature of triiodide anion. The formation of triiodide-based imidazolium ILs have dramatically altered the transport properties in which the ionic liquids obtained are of low viscosity and high ionic conductivity
Preparation and characterization of green polymer by copolymerization of corn oil and sulphur at molten state
Vegetable oils are a promising class of bioresources for producing green polymeric materials to reduce the dependence on petro-based polymers. In this study, a green copolymer prepared by thermal copolymerization corn oil with sulphur at its molten state is reported for the first time. The proportions of sulphur to corn oil (w/w%) in the reaction mixture were varied in the range of 50/50 to 80/20 and the reactions were carried out at 170°C for 1 h. The obtained copolymers were characterized using Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and powder X-ray diffraction (PXRD). The percentage of the unsaturated fatty acid portion was found to act as a multifunctional monomer stabilizing polysulphide forming crosslinked structures that vary depending on reactant sulphur content. The obtained copolymers were found to be amorphous thermosets with heavily crosslinked structures and composite morphologies. The copolymers also showed high thermal stability under nitrogen atmosphere. The new copolymers are environmentally friendly hybrid material promoting green chemistry with a potential added value to abundantly available sulphur and corn oil
Elucidation of the Roles of Ionic Liquid in CO<sub>2</sub> Electrochemical Reduction to Value-Added Chemicals and Fuels
The electrochemical reduction of carbon dioxide (CO2ER) is amongst one the most promising technologies to reduce greenhouse gas emissions since carbon dioxide (CO2) can be converted to value-added products. Moreover, the possibility of using a renewable source of energy makes this process environmentally compelling. CO2ER in ionic liquids (ILs) has recently attracted attention due to its unique properties in reducing overpotential and raising faradaic efficiency. The current literature on CO2ER mainly reports on the effect of structures, physical and chemical interactions, acidity, and the electrode–electrolyte interface region on the reaction mechanism. However, in this work, new insights are presented for the CO2ER reaction mechanism that are based on the molecular interactions of the ILs and their physicochemical properties. This new insight will open possibilities for the utilization of new types of ionic liquids. Additionally, the roles of anions, cations, and the electrodes in the CO2ER reactions are also reviewed