18 research outputs found

    Heat transfer augmentation during water steam condensation on twisted profile tubes

    Full text link
    Some results are presented of experimental and theoretical research of hydrodynamics and heat transfer during condensation of water steam (both stationary and slowly moving) on twisted profile tubes (TPT). For a heat transfer coefficient during condensation of stationary steam on TPT two characteristic areas were observed. At small values of condensate film Reynolds numbers a TPT heat transfer coefficient can be 10-15% below that of the plain tubes depending on profile parameters. With the rise of both condensate film Reynolds number and profile parameter h/s heat transfer coefficient increases up to 50% in comparison to a plain tube. During slowly moving steam condensation the TPT heat transfer coefficient increases up to 70% as compared to a plain tube. Conducted research and industrial tests results showed that the assured effect of a heat transfer coefficient increase in TPT heat exchangers could reach for turbine condensers 15%, for low cycle heaters 35-40%. The heat exchangers hydraulic resistance increases by 40-70%. © 2014 WIT Press.International Journal of Safety and Security Engineering;International Journal of Sustainable Development and Planning;WIT Transactions on Ecology and the Environmen

    Single-phase media hydrodynamics and heat transfer in heat exchangers with twisted profile tubes

    Full text link
    A profiled heat exchanger tube is the one in which some features have been incorporated into the tube geometry for heat transfer enhancement. They offer a perspective method of steam turbine shell-and-tube heat exchangers improvement. Twisted profile tubes (TPT) are widely used in power engineering. This paper presents some results of experimental and theoretical research of hydrodynamics and heat transfer in TPTs. It is revealed that the heat transfer coefficient for water flow in a TPT increases up to 80% compared to that of a plain tube. With a rise of media Reynolds number, the heat transfer rate in a TPT decreases in comparison to that of a plain tube, but for air flow in a TPT the heat transfer coefficients ratio does not depend on the Reynolds number value. Water flow hydraulic losses in TPTs increase from 15 to 100% depending on the tube profile parameters. © 2014 WIT Press.International Journal of Safety and Security Engineering;International Journal of Sustainable Development and Planning;WIT Transactions on Ecology and the Environmen
    corecore