15 research outputs found

    Expansion of CD25 +

    No full text
    OBJECTIVE: Innate lymphoid cells (ILCs) are a newly discovered subset of immune cells that promote tissue homeostasis and protect against pathogens. ILCs produce cytokines also produced by T lymphocytes that have been shown to affect atherosclerosis, but the influence of ILCs on atherosclerosis has not been explored. APPROACH AND RESULTS: We demonstrate that CD25(+) ILCs that produce type 2 cytokines (ILC2s) are present in the aorta of atherosclerotic immunodeficient ldlr(−/−)rag1(−/−) mice. To investigate the role of ILCs in atherosclerosis, ldlr(−/−)rag1(−/−) mice were concurrently fed an atherogenic diet and treated with either ILC-depleting anti-CD90.2 antibodies or with IL-2/anti-IL-2 complexes that expand CD25(+) ILCs. Lesion development was not affected by anti-CD90.2 treatment, but was reduced in IL-2/anti-IL-2 -treated mice. These IL-2 treated mice had reduced VLDL cholesterol and increased triglycerides compared to controls and reduced apolipoprotein B100 gene expression in the liver. IL-2/anti-IL-2 treatment caused expansion of ILC2s in aorta and other tissues, elevated levels of IL-5, systemic eosinophila and hepatic eosinophilic inflammation. Blockade of IL-5 reversed the IL-2-complex-induced eosinophilia but did not change lesion size. CONCLUSIONS: This study demonstrates that expansion of CD25-expressing ILCs by IL-2/anti-IL-2 complexes leads to a reduction in VLDL cholesterol and atherosclerosis. Global depletion of ILCs by anti-CD90.2 did not significantly affect lesion size indicating that different ILC subsets may have divergent effects on atherosclerosis

    Statin-induced Kruppel-like factor 2 expression in human and mouse T cells reduces inflammatory and pathogenic responses

    No full text
    The transcription factor kruppel-like factor 2 (KLF2) is required for the quiescent and migratory properties of naive T cells. Statins, a class of HMG-CoA reductase inhibitors, display pleiotropic immunomodulatory effects that are independent of their lipid-lowering capacity and may be beneficial as therapeutic agents for T cell–mediated inflammatory diseases. Statins upregulate KLF2 expression in endothelial cells, and this activity is associated with an antiinflammatory phenotype. We therefore hypothesized that the immunomodulatory effects of statins are due, in part, to their direct effects on T cell KLF2 gene expression. Here we report that lipophilic statin treatment of mouse and human T cells increased expression of KLF2 through a HMG-CoA/prenylation–dependent pathway. Statins also diminished T cell proliferation and IFN-γ expression. shRNA blockade of KLF2 expression in human T cells increased IFN-γ expression and prevented statin-induced IFN-γ reduction. In a mouse model of myocarditis induced by heart antigen–specific CD8+ T cells, both statin treatment of the T cells and retrovirally mediated overexpression of KLF2 in the T cells had similar ameliorating effects on disease induction. We conclude that statins reduce inflammatory functions and pathogenic activity of T cells through KLF2-dependent mechanisms, and this pathway may be a potential therapeutic target for cardiovascular diseases
    corecore