12 research outputs found

    A prospective study on using shear wave elastography to predict the ypT0 stage of rectal cancer after neoadjuvant therapy: a new support for the watch-and-wait approach?

    Get PDF
    Introduction:The diagnostic accuracy of traditional imaging examination in predicting ypT stage of rectal cancer after neoadjuvant therapy is significantly reduced, which would affect patients’ subsequent treatment choices. This study aimed to investigate the use of endorectal shear wave elastography (SWE) for diagnosing ypT0 stage of rectal cancer after neoadjuvant chemoradiotherapy (nCRT).Methods:Sixty patients with rectal cancer were prospectively recruited in this study. Data on endorectal ultrasound (ERUS) and SWE parameters were collected before nCRT and 6–8 weeks after nCRT. Postoperative pathological results were the gold standard for evaluating the diagnostic accuracy of SWE and ERUS in predicting the ypT0 stage of rectal cancer after nCRT. Receiver operating characteristic (ROC) curve analysis was used to determine the cut-off values of the SWE parameters that best corresponded to the ypT0 stage and analyze the sensitivity, specificity, and accuracy.Results:The diagnostic accuracies of using ERUS to predict the ypT and ypT0 stages of rectal cancer after nCRT were 58.1% (18/31) and 64.3% (9/14), respectively. The ROC curve was constructed with the lesion’s Emean, Emean corrected (EC), Emean difference (ED), Emean corrected differencede (ECD), Emean descendding rate (EDR) and Emean corrected descendding rate (ECDR) values after nCRT, the cut-off values of diagnosing the ypT0 stage were 64.40 kPa, 55.45 kPa, 72.55 kPa, 73.75 kPa, 50.15%, and 55.93%, respectively; the area under the curve (AUC) for diagnosing the ypT0 stage was 0.924, 0.933, 0.748, 0.729, 0.857 and 0.861, respectively. The EC value showed the best diagnostic performance.Conclusion:SWE could improve the accuracy of conventional ERUS in diagnosing the ypT0 stage of rectal cancer after nCRT. It is expected to become a new method to help predict pathological complete responses in clinical practice and provide new evidence for the watch-and-wait approach

    Study on Simulation and Experiment of Cu, C-Doped Ag/Ni Contact Materials

    No full text
    Ag/Ni contact material with greenery and good performance is a cadmium-free silver-based contact material that has been vigorously developed in recent years. However, Ag/Ni contact material has poor welding resistance. Based on the first principles of density functional theory, the interface model of Cu, C-doped Ag/Ni was established. The work of separation and interfacial energy of interface models showed that doping can improve the interfacial bonding strength and interfacial stability, with C-doped Ag/Ni having the strongest stability and interfacial bonding strength. It can be seen from the population and density of state that covalent bonds exist between Ag and Ni atoms of the Ag/Ni phase interface at the electronic structure level. Finally, the doped Ag/Ni contact material was prepared by the powder metallurgy method. Through the arc energy and welding force in the electrical contact experiment, it was obtained that the welding resistance of C-doped Ag/Ni was better than Cu-doped Ag/Ni contact material, which verified the correctness of the simulation results. Overall, the present study provides a theoretical method for the screening of doping elements to improve the performance of Ag/Ni contact material

    Simulation and experiments on the performance of Co and Mo doped AgNi contact materials

    No full text
    In response to the inadequacy of experimental methods to explore the effect of doping modification on the performance of AgNi contact materials, the Ag/Ni interface simulation model was established based on the first-principles density functional theory to study the interfacial stability and electronic structure of Ag/Ni with Co-doped and Mo-doped. The stability at the interface can directly affect the anti-melt welding performance of AgNi contact materials. The doping can enhance the interfacial bonding stability of Ag/Ni, the hybridization of Ag and Ni orbitals and the bonding strength of Ag-Ni metal bonds, among which the Mo-doped Ag/Ni has the best stability. The contact materials were prepared by powder metallurgy method. Wettability test and electrical contact performance test were conducted on AgNi contacts before and after doping. It was found that Co and Mo doping improved the anti-melt welding performance and anti-arc erosion performance of the intrinsic contact materials, which verified the simulation conclusions. The doping of Mo in AgNi contacts resulted in a substantial reduction of melt welding force and a significant reduction of material loss, which had the most obvious improvement effect on the contact materials

    Properties of AgSnO<sub>2</sub> Contact Materials Doped with Different Concentrations of Cr

    No full text
    As an important component carrying the core function and service life of switching appliances, the selection and improvement of electrical contact materials is of great significance. AgSnO2, which is non-toxic, environmentally friendly and has excellent performance, has become the most promising contact material to replace AgCdO. However, it has deficiencies in machinability and electrical conductivity. The property of AgSnO2 contact material was improved by doping element Cr. The relationship between the mechanical and electrical properties of AgSnO2 contact materials and doping concentrations were investigated and analyzed by simulation and experiment. Based on the first principle, the elastic constants of supercell models Sn1−xCrxO2 (x = 0, 0.083, 0.125, 0.167, 0.25) were calculated. The results show that the material with a doping ratio of 25% is least prone to warp and crack, and the material with a doping ratio of 12.5% has the best toughness and ductility and the lowest hardness, which leads to molding and is subsequently easier to process. The Cr-doped AgSnO2 contacts with different doping proportions were prepared by the sol–gel and powder metallurgy method. Additionally, their physical performance and electrical contact properties were measured in experiments. The results show that the doped SnO2 powders prepared by the sol–gel method realize integration doping, which is consistent with the crystal model constructed in the simulation calculation. Sn0.875Cr0.125O2 has lower hardness, which is beneficial to process and form. Doping helps to stabilize the arc root, inhibit the ablation of contact by arc, reduces arc duration and arc energy, improves the resistance to arc erosion of AgSnO2 contact material, and makes electrical contact performance more stable. The contact material with a doping concentration of 16.7% has the best arc erosion resistance

    Progress in the clinical application of constraint-induced therapy following stroke since 2014

    Get PDF
    Stroke is a group of cerebrovascular diseases with high prevalence and mortality rate. Stroke can induce many impairments, including motor and cognitive dysfunction, aphasia/dysarthria, dysphagia, and mood disorders, which may reduce the quality of life among the patients. Constraint-induced therapy has been proven to be an effective treatment method for stroke rehabilitation. It has been widely used in the recovery of limb motor dysfunction, aphasia, and other impairment like unilateral neglect after stroke. In recent years, constraint-induced therapy can also combine with telehealth and home rehabilitation. In addition, constraint-induced therapy produces significant neuroplastic changes in the central nervous system. Functional magnetic resonance imaging, diffusion tensor imaging, and other imaging/electrophysiology methods have been used to clarify the mechanism and neuroplasticity. However, constraint-induced therapy has some limitations. It can only be used under certain conditions, and the treatment time and effectiveness are controversial. Further research is needed to clarify the mechanism and effectiveness of CI therapy

    Interaction of Nipah Virus F and G with the Cellular Protein Cortactin Discovered by a Proximity Interactome Assay

    No full text
    Nipah virus (NiV) is a highly lethal zoonotic virus with a potential large-scale outbreak, which poses a great threat to world health and security. In order to explore more potential factors associated with NiV, a proximity labeling method was applied to investigate the F, G, and host protein interactions systematically. We screened 1996 and 1524 high-confidence host proteins that interacted with the NiV fusion (F) glycoprotein and attachment (G) glycoprotein in HEK293T cells by proximity labeling technology, and 863 of them interacted with both F and G. The results of GO and KEGG enrichment analysis showed that most of these host proteins were involved in cellular processes, molecular binding, endocytosis, tight junction, and other functions. Cytoscape software (v3.9.1) was used for visual analysis, and the results showed that Cortactin (CTTN), Serpine mRNA binding protein 1 (SERBP1), and stathmin 1 (STMN1) were the top 20 proteins and interacted with F and G, and were selected for further validation. We observed colocalization of F-CTTN, F-SERBP1, F-STMN1, G-CTTN, G-SERBP1, and G-STMN1 using confocal fluorescence microscopy, and the results showed that CTTN, SERBP1, and STMN1 overlapped with NiV F and NiV G in HEK293T cells. Further studies found that CTTN can significantly inhibit the infection of the Nipah pseudovirus (NiVpv) into host cells, while SERBP1 and STMN1 had no significant effect on pseudovirus infection. In addition, CTTN can also inhibit the infection of the Hendra pseudovirus (HeVpv) in 293T cells. In summary, this study revealed that the potential host proteins interacted with NiV F and G and demonstrated that CTTN could inhibit NiVpv and HeVpv infection, providing new evidence and targets for the study of drugs against these diseases
    corecore