10,736 research outputs found

    Systematics of fusion probability in "hot" fusion reactions

    Full text link
    The fusion probability in "hot" fusion reactions leading to the synthesis of super-heavy nuclei is investigated systematically. The quasi-fission barrier influences the formation of the super-heavy nucleus around the "island of stability" in addition to the shell correction. Based on the quasi-fission barrier height obtained with the Skyrme energy-density functional, we propose an analytical expression for the description of the fusion probability, with which the measured evaporation residual cross sections can be reproduced acceptably well. Simultaneously, some special fusion reactions for synthesizing new elements 119 and 120 are studied. The predicted evaporation residual cross sections for 50Ti+249Bk are about 10-150fb at energies around the entrance-channel Coulomb barrier. For the fusion reactions synthesizing element 120 with projectiles 54Cr and 58Fe, the cross sections fall to a few femtobarns which seems beyond the limit of the available facilities.Comment: 5 figures, 1 tabl

    On Revenue Maximization with Sharp Multi-Unit Demands

    Full text link
    We consider markets consisting of a set of indivisible items, and buyers that have {\em sharp} multi-unit demand. This means that each buyer ii wants a specific number did_i of items; a bundle of size less than did_i has no value, while a bundle of size greater than did_i is worth no more than the most valued did_i items (valuations being additive). We consider the objective of setting prices and allocations in order to maximize the total revenue of the market maker. The pricing problem with sharp multi-unit demand buyers has a number of properties that the unit-demand model does not possess, and is an important question in algorithmic pricing. We consider the problem of computing a revenue maximizing solution for two solution concepts: competitive equilibrium and envy-free pricing. For unrestricted valuations, these problems are NP-complete; we focus on a realistic special case of "correlated values" where each buyer ii has a valuation v_i\qual_j for item jj, where viv_i and \qual_j are positive quantities associated with buyer ii and item jj respectively. We present a polynomial time algorithm to solve the revenue-maximizing competitive equilibrium problem. For envy-free pricing, if the demand of each buyer is bounded by a constant, a revenue maximizing solution can be found efficiently; the general demand case is shown to be NP-hard.Comment: page2

    Pegasus: A New Hybrid-Kinetic Particle-in-Cell Code for Astrophysical Plasma Dynamics

    Full text link
    We describe Pegasus, a new hybrid-kinetic particle-in-cell code tailored for the study of astrophysical plasma dynamics. The code incorporates an energy-conserving particle integrator into a stable, second-order--accurate, three-stage predictor-predictor-corrector integration algorithm. The constrained transport method is used to enforce the divergence-free constraint on the magnetic field. A delta-f scheme is included to facilitate a reduced-noise study of systems in which only small departures from an initial distribution function are anticipated. The effects of rotation and shear are implemented through the shearing-sheet formalism with orbital advection. These algorithms are embedded within an architecture similar to that used in the popular astrophysical magnetohydrodynamics code Athena, one that is modular, well-documented, easy to use, and efficiently parallelized for use on thousands of processors. We present a series of tests in one, two, and three spatial dimensions that demonstrate the fidelity and versatility of the code.Comment: 27 pages, 12 figures, accepted for publication in Journal of Computational Physic

    Random close packing revisited: How many ways can we pack frictionless disks?

    Full text link
    We create collectively jammed (CJ) packings of 50-50 bidisperse mixtures of smooth disks in 2d using an algorithm in which we successively compress or expand soft particles and minimize the total energy at each step until the particles are just at contact. We focus on small systems in 2d and thus are able to find nearly all of the collectively jammed states at each system size. We decompose the probability P(ϕ)P(\phi) for obtaining a collectively jammed state at a particular packing fraction ϕ\phi into two composite functions: 1) the density of CJ packing fractions ρ(ϕ)\rho(\phi), which only depends on geometry and 2) the frequency distribution β(ϕ)\beta(\phi), which depends on the particular algorithm used to create them. We find that the function ρ(ϕ)\rho(\phi) is sharply peaked and that β(ϕ)\beta(\phi) depends exponentially on ϕ\phi. We predict that in the infinite system-size limit the behavior of P(ϕ)P(\phi) in these systems is controlled by the density of CJ packing fractions--not the frequency distribution. These results suggest that the location of the peak in P(ϕ)P(\phi) when NN \to \infty can be used as a protocol-independent definition of random close packing.Comment: 9 pages, 14 figure

    New Approach on the General Shape Equation of Axisymmetric Vesicles

    Full text link
    The general Helfrich shape equation determined by minimizing the curvature free energy describes the equilibrium shapes of the axisymmetric lipid bilayer vesicles in different conditions. It is a non-linear differential equation with variable coefficients. In this letter, by analyzing the unique property of the solution, we change this shape equation into a system of the two differential equations. One of them is a linear differential equation. This equation system contains all of the known rigorous solutions of the general shape equation. And the more general constraint conditions are found for the solution of the general shape equation.Comment: 8 pages, LaTex, submit to Mod. Phys. Lett.

    Respon Pemberian Hormon Tumbuh Dan Mikoriza Terhadap Pertumbuhan Stek Ramin (Gonystylus Bancanus (Miq.) Kurz)

    Get PDF
    This study was conducted to determine the effect of growth hormones and mycorhyza application on the growth of ramin cuttings. A Completely Randomized Design with 5 replicates was used in this study. The experiment consisted of two stages i.e hormon treatments (control, Rapid root, Root Up, IBA 250 mg/l, IBA 500 mg/l, IBA 1000 mg/l), Fusarium and mycorhyza applications. The result showed that the highest number of root was obtained from Root Up (12,83 cm), while the lowest was from Fusarium treatments (4,67 cm). IBA 250 mg/l enhanced the number of roots and the length of root significantly but not stimulate the development of new leaf. While mycorhyza application improving the growth of the new leaf and the root development of ramin

    Gate Tunable Dissipation and "Superconductor-Insulator" Transition in Carbon Nanotube Josephson Transistors

    Full text link
    Dissipation is ubiquitous in quantum systems, and its interplay with fluctuations is critical to maintaining quantum coherence. We experimentally investigate the dissipation dynamics in single-walled carbon nanotubes coupled to superconductors. The voltage-current characteristics display gate-tunable hysteresis, with sizes that perfectly correlate with the normal state resistance RN, indicating the junction undergoes a periodic modulation between underdamped and overdamped regimes. Surprisingly, when a device's Fermi-level is tuned through a local conductance minimum, we observe a gate-controlled transition from superconducting-like to insulating-like states, with a "critical" R_N value of about 8-20 kohm.Comment: Figures revised to improve clarity. Accepted for publication by Physical Review Letter
    corecore