37 research outputs found

    Improved HSC reconstitution and protection from inflammatory stress and chemotherapy in mice lacking granzyme B.

    Get PDF
    The serine protease granzyme B (GzmB) is stored in the granules of cytotoxic T and NK cells and facilitates immune-mediated destruction of virus-infected cells. In this study, we use genetic tools to report novel roles for GzmB as an important regulator of hematopoietic stem cell (HSC) function in response to stress. HSCs lacking the GzmB gene show improved bone marrow (BM) reconstitution associated with increased HSC proliferation and mitochondrial activity. In addition, recipients deficient in GzmB support superior engraftment of wild-type HSCs compared with hosts with normal BM niches. Stimulation of mice with lipopolysaccharide strongly induced GzmB protein expression in HSCs, which was mediated by the TLR4-TRIF-p65 NF-ÎşB pathway. This is associated with increased cell death and GzmB secretion into the BM environment, suggesting an extracellular role of GzmB in modulating HSC niches. Moreover, treatment with the chemotherapeutic agent 5-fluorouracil (5-FU) also induces GzmB production in HSCs. In this situation GzmB is not secreted, but instead causes cell-autonomous apoptosis. Accordingly, GzmB-deficient mice are more resistant to serial 5-FU treatments. Collectively, these results identify GzmB as a negative regulator of HSC function that is induced by stress and chemotherapy in both HSCs and their niches. Blockade of GzmB production may help to improve hematopoiesis in various situations of BM stress

    Identification of Regulatory Networks in HSCs and Their Immediate Progeny via Integrated Proteome, Transcriptome, and DNA Methylome Analysis

    Get PDF
    SummaryIn this study, we present integrated quantitative proteome, transcriptome, and methylome analyses of hematopoietic stem cells (HSCs) and four multipotent progenitor (MPP) populations. From the characterization of more than 6,000 proteins, 27,000 transcripts, and 15,000 differentially methylated regions (DMRs), we identified coordinated changes associated with early differentiation steps. DMRs show continuous gain or loss of methylation during differentiation, and the overall change in DNA methylation correlates inversely with gene expression at key loci. Our data reveal the differential expression landscape of 493 transcription factors and 682 lncRNAs and highlight specific expression clusters operating in HSCs. We also found an unexpectedly dynamic pattern of transcript isoform regulation, suggesting a critical regulatory role during HSC differentiation, and a cell cycle/DNA repair signature associated with multipotency in MPP2 cells. This study provides a comprehensive genome-wide resource for the functional exploration of molecular, cellular, and epigenetic regulation at the top of the hematopoietic hierarchy

    Haematopoietic stem cells in perisinusoidal niches are protected from ageing.

    Get PDF
    With ageing, intrinsic haematopoietic stem cell (HSC) activity decreases, resulting in impaired tissue homeostasis, reduced engraftment following transplantation and increased susceptibility to diseases. However, whether ageing also affects the HSC niche, and thereby impairs its capacity to support HSC function, is still widely debated. Here, by using in-vivo long-term label-retention assays we demonstrate that aged label-retaining HSCs, which are, in old mice, the most quiescent HSC subpopulation with the highest regenerative capacity and cellular polarity, reside predominantly in perisinusoidal niches. Furthermore, we demonstrate that sinusoidal niches are uniquely preserved in shape, morphology and number on ageing. Finally, we show that myeloablative chemotherapy can selectively disrupt aged sinusoidal niches in the long term, which is linked to the lack of recovery of endothelial Jag2 at sinusoids. Overall, our data characterize the functional alterations of the aged HSC niche and unveil that perisinusoidal niches are uniquely preserved and thereby protect HSCs from ageing

    Chemotherapy-induced transposable elements activate MDA5 to enhance haematopoietic regeneration.

    Get PDF
    Funder: RCUK | Medical Research Council (MRC); doi: https://doi.org/10.13039/501100000265Funder: Max-Planck-Gesellschaft (Max Planck Society); doi: https://doi.org/10.13039/501100004189Haematopoietic stem cells (HSCs) are normally quiescent, but have evolved mechanisms to respond to stress. Here, we evaluate haematopoietic regeneration induced by chemotherapy. We detect robust chromatin reorganization followed by increased transcription of transposable elements (TEs) during early recovery. TE transcripts bind to and activate the innate immune receptor melanoma differentiation-associated protein 5 (MDA5) that generates an inflammatory response that is necessary for HSCs to exit quiescence. HSCs that lack MDA5 exhibit an impaired inflammatory response after chemotherapy and retain their quiescence, with consequent better long-term repopulation capacity. We show that the overexpression of ERV and LINE superfamily TE copies in wild-type HSCs, but not in Mda5-/- HSCs, results in their cycling. By contrast, after knockdown of LINE1 family copies, HSCs retain their quiescence. Our results show that TE transcripts act as ligands that activate MDA5 during haematopoietic regeneration, thereby enabling HSCs to mount an inflammatory response necessary for their exit from quiescence

    Niche derived netrin-1 regulates hematopoietic stem cell dormancy via its receptor neogenin-1

    Get PDF
    Funder: Studienstiftung des Deutschen Volkes (German National Academic Foundation); doi: https://doi.org/10.13039/501100004350Funder: Heinrich F.C. Behr StiftungFunder: Dietmar Hopp Stiftung; doi: https://doi.org/10.13039/501100005941Abstract: Haematopoietic stem cells (HSCs) are characterized by their self-renewal potential associated to dormancy. Here we identify the cell surface receptor neogenin-1 as specifically expressed in dormant HSCs. Loss of neogenin-1 initially leads to increased HSC expansion but subsequently to loss of self-renewal and premature exhaustion in vivo. Its ligand netrin-1 induces Egr1 expression and maintains quiescence and function of cultured HSCs in a Neo1 dependent manner. Produced by arteriolar endothelial and periarteriolar stromal cells, conditional netrin-1 deletion in the bone marrow niche reduces HSC numbers, quiescence and self-renewal, while overexpression increases quiescence in vivo. Ageing associated bone marrow remodelling leads to the decline of netrin-1 expression in niches and a compensatory but reversible upregulation of neogenin-1 on HSCs. Our study suggests that niche produced netrin-1 preserves HSC quiescence and self-renewal via neogenin-1 function. Decline of netrin-1 production during ageing leads to the gradual decrease of Neo1 mediated HSC self-renewal

    In vivo consequences of AML1-ETO fusion protein expression for hematopoiesis

    No full text
    The t(8;21) (q22;q22) translocation fusing the ETO (also known as MTG8) gene on human chromosome 8 with the AML1 (also called Runx1 or CBFα) gene on chromosome 21 is one of the most common genetic aberrations found in acute myeloid leukemia (AML). This chromosomal translocation occurs in 12 % of de novo AML cases and in up to 40 % of the AML-M2 subtype of the French-American-British classification. To date, the in vivo function of aberrant AML1-ETO fusion protein expression has been investigated by several groups. However, in these studies, controversial results were reported and some key issues remain unknown. Importantly, the consequences of aberrant AML1-ETO expression for self-renewing hematopoietic stem cells (HSCs), multipotent hematopoietic progenitors (MPPs) and lineage-restricted precursors are not known. rn The aim of this thesis was to develop a novel experimental AML1-ETO in vivo model that (i) overcomes the current lack of insight into the pre-leukemic condition of t(8;21)-associated AML, (ii) clarifies the in vivo consequences of AML1-ETO for HSCs, MPPs, progenitors and more mature blood cells and (iii) generates an improved mouse model suitable for mirroring the human condition. For this purpose, a conditional tet on/off mouse model expressing the AML1-ETO fusion protein from the ROSA26 (R26) locus was generated. rn Aberrant AML1-ETO activation in compound ROSA26/tetOAML1-ETO (R26/AE) mice caused high rates of mortality, an overall disruption of hematopoietic organs and a profound alteration of hematopoiesis. However, since the generalized activity of the R26 locus did not recapitulate the leukemic condition found in human patients, it was important to restrict AML1-ETO expression to blood cell lineages. Therefore, bone marrow cells from non-induced R26/AE mice were adoptively transplanted into sublethal irradiated RAG2-/- recipient mice. First signs of phenotypical differences between AML1-ETO-expressing and control mice were observed after eight to nine months of transgene induction. AML1-ETO-expressing mice showed profound changes in hematopoietic organs accompanied by manifest extramedullary hematopoiesis. In addition, a block in early erythropoiesis, B- and T-cell maturation was observed and granulopoiesis was significantly enhanced. Most interestingly, conditional activation of AML1-ETO in chimeric mice did not increase HSCs, MPPs, common lymphoid precursors (CLPs), common myeloid progenitors (CMPs) and megakaryocyte-erythrocyte progenitors (MEPs) but promoted the selective amplification of granulocyte-macrophage progenitors (GMPs). rn The results of this thesis provide clear experimental evidence how aberrant AML1-ETO modulates the developmental properties of normal hematopoiesis and establishes for the first time that AML1-ETO does not increase HSCs, MPPs and common lineage-restricted progenitor pools but specifically amplifies GMPs. The here presented mouse model not only clarifies the role of aberrant AML1-ETO for shaping hematopoietic development but in addition has strong implications for future therapeutic strategies and will be an excellent pre-clinical tool for developing and testing new approaches to treat and eventually cure AML.rnDie t(8;21) (q22;q22) chromosomale Translokation führt zu einer Fusion zwischen dem ETO-Gen (auch bekannt als MTG8) auf dem humanen Chromosom 8 und dem AML1-Gen (Runx1 oder CBFα) auf Chromosom 21 und ist eine der häufigsten genetischen Abberationen, welche bei akuten myeloischen Leukämien (AML) gefunden wird. Das AML1-ETO Fusionsprotein tritt etwa bei 12% aller AML Patienten auf und ist gemäß des französisch-amerikanisch-englischen Klassifizierungsschemas (FAB) bei etwa 40% von AML Patienten der AML-M2 Untergruppe nachweisbar. Trotz intensiver Forschung auf diesem Gebiet, ist die genaue in vivo Funktion dieses Fusionsproteins weiterhin größtenteils unbekannt. Vor allem der Einfluss von AML1-ETO auf hämatopoetische Stammzellen (HSZ), multipotente hämatopoetische Vorläuferzellen (MHV) und linienrestringierte Progenitoren ist unbekannt.rnDas Ziel der vorliegenden Arbeit war die Etablierung eines neuen AML1-ETO Mausmodells, welches (a) ein besseres Verständnis für die frühe Pathogenesse von AML mit t(8;21) liefert, (b) eine Untersuchung der Funktion von AML1-ETO in HSZ, MHV, unreifen und reifen Blutzellen ermöglicht und (c) die Situation im Patienten möglichst genau widerspiegelt. Hierfür wurde ein tet on/off Mausmodell entwickelt, in dem die Expression des AML1-ETO Fusionproteins unter dem Einfluss des ROSA26 (R26)-Lokus steht.rnAberrante Expression von AML1-ETO in ROSA26/tetOAML1-ETO (R26/AE) Mäusen führte zu einer hohen Mortalität, einer Atrophie hämatopoetischer Organe und einer gestörten Blutzellbildung. Aufgrund der ubiquitären Aktivität des R26-Lokus im Organismus, war es wichtig, die Induktion von AML1-ETO auf Blutzellen zu beschränken, um so die im Patienten gefundene Situation zu rekapitulieren. Um diese Voraussetzung experimentell umzusetzen, wurden Knochenmarkzellen aus nicht induzierten R26/AE Mäusen in subletal bestrahlte RAG2-/- Mäuse adoptiv transferiert. Nach acht bis neun Monaten zeigten sich in den AML1-ETO induzierten Mäusen erste phänotypische Veränderungen. Diese äußerten sich in einer Atrophie hämatopoetischer Organe sowie der Induktion von extramedullärer Hämatopoese. Des Weiteren wurde durch AML1-ETO Expression die initiale Ausreifung von roten Blutzellen, B- und T-Zellen blockiert, die Granulopoese jedoch verstärkt. Interessanterweise führt die konditionelle Aktivierung von AML1-ETO in chimären Mäusen nicht zu einer Vermehrung von HSZ, MHV, gemeinsamen lymphopoietischen, myeloischen und Megakaryo-/Erythrozytären-Vorläufer, aber zu einer spezifischen Expansion der Granulozyten-/Makrophagen-Vorläuferzellen (GMV).rnDie vorliegende Arbeit beschreibt den Einfluss von AML1-ETO Expression auf die normale Hämatopoese und zeigt erstmals, dass AML1-ETO keine Auswirkung auf HSZ, MHV und gemeinsame linienrestringierte Vorläuferpopulationen hat, sondern zu einer spezifischen Expansion von GMV führt. Im Rahmen dieser Arbeit ist es mit Hilfe des hier etablierten Mausmodells gelungen, die funktionelle Auswirkung aberranter AML1-ETO Aktivierung für die Entwicklung von Blutzellen aufzuklären und gleichzeitig neue Therapiestrategien für die zukünftige Behandlung von AML aufzuzeigen.r

    Metabolic Regulation of Hematopoietic Stem Cells

    No full text
    Cellular metabolism is a key regulator of hematopoietic stem cell (HSC) maintenance. HSCs rely on anaerobic glycolysis for energy production to minimize the production of reactive oxygen species and shift toward mitochondrial oxidative phosphorylation upon differentiation. However, increasing evidence has shown that HSCs still maintain a certain level of mitochondrial activity in quiescence, and exhibit high mitochondrial membrane potential, which both support proper HSC function. Since glycolysis and the tricarboxylic acid (TCA) cycle are not directly connected in HSCs, other nutrient pathways, such as amino acid and fatty acid metabolism, generate acetyl-CoA and provide it to the TCA cycle. In this review, we discuss recent insights into the regulatory roles of cellular metabolism in HSCs. Understanding the metabolic requirements of healthy HSCs is of critical importance to the development of new therapies for hematological disorders
    corecore