10 research outputs found

    Genes Involved in Systemic and Arterial Bed Dependent Atherosclerosis - Tampere Vascular Study

    Get PDF
    BACKGROUND: Atherosclerosis is a complex disease with hundreds of genes influencing its progression. In addition, the phenotype of the disease varies significantly depending on the arterial bed. METHODOLOGY/PRINCIPAL FINDINGS: We characterized the genes generally involved in human advanced atherosclerotic (AHA type V-VI) plaques in carotid and femoral arteries as well as aortas from 24 subjects of Tampere Vascular study and compared the results to non-atherosclerotic internal thoracic arteries (n=6) using genome-wide expression array and QRT-PCR. In addition we determined genes that were typical for each arterial plaque studied. To gain a comprehensive insight into the pathologic processes in the plaques we also analyzed pathways and gene sets dysregulated in this disease using gene set enrichment analysis (GSEA). According to the selection criteria used (>3.0 fold change and p-value <0.05), 235 genes were up-regulated and 68 genes down-regulated in the carotid plaques, 242 genes up-regulated and 116 down-regulated in the femoral plaques and 256 genes up-regulated and 49 genes down-regulated in the aortic plaques. Nine genes were found to be specifically induced predominantly in aortic plaques, e.g., lactoferrin, and three genes in femoral plaques, e.g., chondroadherin, whereas no gene was found to be specific for carotid plaques. In pathway analysis, a total of 28 pathways or gene sets were found to be significantly dysregulated in atherosclerotic plaques (false discovery rate [FDR] <0.25). CONCLUSIONS: This study describes comprehensively the gene expression changes that generally prevail in human atherosclerotic plaques. In addition, site specific genes induced only in femoral or aortic plaques were found, reflecting that atherosclerotic process has unique features in different vascular beds

    Gene expression profiles in Finnish twins with multiple sclerosis

    Get PDF
    Background Since genetic alterations influencing susceptibility to multiple sclerosis (MS), the most common autoimmune demyelinating disease of the central nervous system (CNS), are as yet poorly understood, the purpose of this study was to identify genes responsible for MS by studying monozygotic (MZ) twin pairs discordant for MS. Methods In order to identify genes involved in MS development, the gene expression profiles in blood mononuclear cells obtained from eight MZ twin pairs discordant for MS were analyzed by cDNA microarray technology detecting the expression of 8 300 genes. The twins were collected from the Finnish Twin Cohort Study and both affected subjects and their healthy siblings underwent neurological evaluation and cerebral and spinal magnetic resonance imaging. Gene expressions were confirmed by relative quantitative reverse transcription PCR. Results It appeared that 25 genes were at least two-fold up-regulated and 15 genes down-regulated in 25% (2/8) of twins with MS when compared to their healthy siblings. Moreover, 6/25 genes were up-regulated in 40% of MS twins and one gene, interferon alpha-inducible protein (clone IFI-6-16) (G1P3), in 50% of them. The six most constantly expressed genes are (1) G1P3, (2) POU domain, class 3, transcription factor 1, (3) myxovirus resistance 2, (4) lysosomal-associated multispanning membrane protein-5, (5) hemoglobin alpha 2 and (6) hemoglobin beta. Conclusion Over two-fold up-regulation of these six genes in almost half of MZ twins with MS suggests their role in MS pathogenesis. Studies using MZ MS twins obtained from genetically homogeneous population offer a unique opportunity to explore the genetic nature of MS.BioMed Central Open acces

    ADAM-9, ADAM-15, and ADAM-17 are upregulated in macrophages in advanced human atherosclerotic plaques in aorta and carotid and femoral arteriesTampere vascular study

    No full text
    Background and aims. The expression of disintegrin and metalloprotease ADAM-9, ADAM-15, and ADAM-17 has been associated with cell-cell, cell-platelet, and cell-matrix interactions and inflammation. They are possibly implicated in the pathophysiology of atherosclerosis. Methods and results. Whole-genome expression array and quantitative real-time polymerase chain reaction (PCR) analysis confirmed that ADAM-9, ADAM-15, and ADAM-17 are upregulated in advanced human atherosclerotic lesions in samples from carotid, aortic, and femoral territories compared to samples from internal thoracic artery (ITA) free of atherosclerotic plaques. Western analysis indicated that the majority of these ADAMs were in the catalytically active form. ADAM-9, ADAM-15, and ADAM-17-expressing cells were shown to co-localize with CD68-positive cells of monocytic origin in the atherosclerotic plaques using immunohistochemistry and double-staining immunofluorescence analysis. Co-localization was demonstrated in all vascular territories. In the carotid territory, cells expressing the ADAMs co-distributed also with smooth muscle cells and, in femoral territory, with CD31-positive endothelial cells, indicating that the ADAM expression pattern depends on vascular bed territory. Conclusions. Present findings provide strong evidence for the involvement of catalytically active ADAM-9, ADAM-15, and ADAM-17 in advanced atherosclerosis, most notably associated with cells of monocytic origin
    corecore